

Structural Calculations

For

Park Residence Single Family House Addition / Remodel

8244 SE 30th Street Mercer Island, WA 98040 (Parcel # 545230-0816)

Prepared By: Sung U. Cho, P.E. Prepared Date: March 28, 2022 Revision Date: August 15, 2023

CS2 No.: 2207

8244 SE 30th St (#545230-0816) Project: Date: March 28, 2022 Prepared By: Location: Mercer Island, WA S. Cho CS2 No:

2207 Page

I. Scope of Work

Provide structural design calculations of remodel construction of existing single-family residential house. The house is located on 8244 SE 30th Street at City of Mercer Island. The information in this report summarizes the requirements for construction of structural elements for the gravity loads and lateral loads resisting in conformance with the International Building Code 2018. The engineering of such structural elements and connections are designed to resist the vertical (gravity) loading particular to concrete foundation. Unless noted otherwise, all means and methods used shall be in keeping with good and generally accepted construction practices.

Please refer to the following calculations and supporting sketches as well as the architectural drawing package as provided by others.

II. Loads/Design Criteria: (IBC 2018 & ASCE 7-16)

Please refer to the following calculations

- 1. Dead Load See calculation
- 2. Live Load Roof = 25 psf (snow load)

Floor = 40 psf

Deck = 60 psf

3. Seismic – $S_S = 1.395g$, $S_1 = 0.486g$, $S_{DS} = 1.116g$, $S_{D1} = N/A$

Site Class D, I = 1.0, R = 6.5

- 4. Wind Exposure C, Basic Wind Speed (V_{3S}) = 98 mph, I = 1.0 (per ASCE)
- 5. Concrete compressive strength, f'c = 3.000 psi
- 6. Concrete steel reinforcing strength, fy = 60,000 psi
- 7. Allowable soil bearing pressure = 2,000 psf
- 8. Passive Soil Pressure = 250 pcf

References:

- 1. IBC 2018
- 2. **ASCE 7-16**
- 3. ACI 318-14
- **SPDWS 2015** 4.
- NDS 2018 5.

III. Conclusions and Recommendations

General contractor shall verify all existing dimensions, member sizes and conditions prior to commencing any work. All dimensions of existing condition shown on the reference are intended as guidelines only and must be verified in field. Any discrepancies shall be called to the attention of the architect or engineer and shall be resolved before proceeding with the work.

Contractor shall provide temporary bracing for the structure and structural components until all final connections have been completed in accordance with the plans

 Project:
 8244 SE 30th St (#545230-0816)
 Date:
 March 28, 2022

 Location:
 Mercer Island, WA
 Prepared By:
 S. Cho

 CS2 No:
 2207
 Page

Gravity Load Design Calculation

Civil & Structural Challenge & Success

Project:	House Remodel (8244 SE 30th St, Mercer Island)						
Client:	Owner Job No.: 2207						
Ву:	S. Cho	Date:	8/5/23				
Subject:	Design Calculations	Page:					

Design & Loading Criteria

Roof Dead Load:			
Roofing =	2.8	psf	
Insulation =	2.5	psf	
Roof sheathing =	1.7	psf	
Rafters @ 24" o.c. =	3.0	psf	
5/8" GWB =	2.8	psf	
M & E =	0.5	psf	
Miscellaneous =	1.0	psf	
Roof dead load total =	14.3	psf	
USE =	15.0	psf	
Roof Live Load:	25	psf	
Total Roof Load =	40.0	psf	

Floor Dead Load:			
Floor Cover =	1.0	psf	
Insulation =	1.0	psf	
Floor sheathing =	2.7	psf	
Joists @ 16" o.c. =	2.8	psf	
5/8" GWB =	2.8	psf	
M & E =	1.0	psf	
Miscellaneous =	0.5	psf	
Floor dead load total =	11.8	psf	<u>.</u>
USE =	12.0	psf	
Floor Live Load:	40	psf	
Total Floor Load =	52.0	psf	

Wall Dead Load:

 2x Stud @ 16" o.c. =
 2.0

 7/16" Sheathing =
 1.8

 Gypsum sheathing =
 2.0

 psf psf psf Insulation = 1.0 psf Siding = 2.0 psf Miscellaneous = 0.5 psf Wall dead load total = 9.3 psf USE = 10.0 psf

DESIGN REFERENCES:

- ·ASCE 7-16, MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURE.
- ·IBC 2018, INTERNATIONAL BUILDING CODE 2018.
- ·ACI 318-14, BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE AND COMMENTARY.
- \cdot NDS 2018, NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION WITH COMMENTARY.
- ·AWC SDPWS-2015, SPECIAL DESIGN PROVISIONS FOR WIND AND SEISMIC WITH COMMENTARY.
- ·AISC 360-16, SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS: STEEL DESIGN MANUAL

		ADDITION	By: S. CHO	Page:
CS2 ENGINEERS	Location: MERCER 1	SLAND, WA	Date:	
Civil & Structural Challenge & Success Green Design For Our Environment	Client:	Check:	Job No:	
	Subject:		Date:	
JOIST & BEAM DE	SIGN			
HDR				
- MAIN FLOOR HEAL	DER CTYPICAL	· /		ļ
77414 1000 11041	ek (IIIIore	/ (6×8	bF#2)	
	10/1 - 5-			
W DL = (15 psf)(-			=300+500	plt
WSL = (25 psf) (40/2) = 500 p.	4 1 1=	· 5 '	1
				, k
		Pa = 804#		Por= 804#
		Psc=1312#		PH=1312#
		17 1315		14 (314"
The state of the s			-	<u> </u>
DJa	,		.	ļļļ
DECK JOIST @ HAI	N FLOOR #	BASEMENT		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(P.T. 2×10	here)	
WM=(10psf)(16/12) =	13.33 plt			
Wil=(60 psf) (16 //1) =	BO plf	WoL-	t-WLL	
10 (10 BT) (1/12) -		*	7	1
		- Ja-		D=
		Rol = 75#	Ra	= 85-
		Ru=452*	5 1: 1	= 512#
			.	
DBIA				
DECK BEAM @ MAIN	FLOOR	(PT 6x	10 bF#2)
Wn= (85*)(12/16) =	- 63.8 24	WpL +1	λ	
		THE RESERVE OF THE PROPERTY OF	************	
Wu = (\$12 16) =	204 per	T le	12'-8%"	
		8 n = 507		5074
		Ru = 507 22/ Ru = 25 ²⁸		5074 25284
WDL= (72*)(12/16)=54	-plt 1/2000			
		ft 3ea plf !	54 pef + 325	plf
WLL= (433*) (12/16) = 32	5 plt 1	8/2" 1	1 0	7
	¥2 2 ·	-6/2	V	
	Pol = 461 #	1234*	995-#	35)=
	Pu Page 4 of 5	2 67014	5411 =1	1976#
	Page 4 of 5	3	7 11 i i	

	Project: HOUSE		By: S. CHO	Page:
CS2 <i>Engineers</i>	Location: WERCER	ISLAND, WA	Date:	
Civil & Structural Challenge & Success Green Design For Our Environment	Client:		Check:	Job No:
Green Design For Our Environment	Subject:		Date:	
F7.1				
FJ la	ļļļļ			
FLOOR JOIST @ MA	AIN FLOOR			
		(2×t0	DF#2 @	(2"0.C.)
() () ()	() 00			
WpL = (12 psf) (12) WLL = (40psf) (12)	(12) = 12 px+			
Wu = (40 psf) (12)	(2) = 40 plt	Wpl + N	12+4	0
		1-11	, /	1
		2 - 11)	
		B 013		96#
		Ra=957	4 4 4 4	
		Ru=317		317*
FJ-16		***************************************	+4 1	(" - 1
		(2x lo D	T#201	0.4)
1 7 6 211/17	V = 11 0f			
Not = (12 psf) (16/12) = 16 pxt	WOLT WE	L = 16 + 53.3	
(D LL = (240ps+) (16)/12) = 53.3 ph	*	1,	
		X=	ŋ`::::::::::::::::::::::::::::::::::::	
		-4		
		Po = 93 = 4		93*
		Pu = 309*		309#
		Fu Pi		701
			.	- 11
Folc		() X 10 ()F#2 @	16"O.C.)
Wb1 = 16 pet				
		11 . 10	- 11 + 63	9
WLL = 53.3 PH		Noct WI	L = 16 +53	.3
		1 0=	8.375'	1
		D - 73#		72=4
		Rp. = 72 =		
		Ru=239#		239#
FBIA (INTERIOR B	EAM)			ļļ
				l
Wor = (12 pst) (16/2	+11/2) - 160	604		
WYL - (12/51) (10/2	1. 12) - 102	162 +5	to elf	
Whi = (40 psf) (16/2+	1/) = 540	pl A		
THE CHUIST/ L 72T	12/ 170		9.75	
		Rac = 866 = 3711 = 4		846 #
162 +540 jel+		For = 000 Ru = 2711#		27//#
				-(1)
704 4 9.75	8.8	580 T		
2-443	F6158 Page 5	(0) かな(

	Project:	Ву:	Page:	
CS2 ENGINEERS	Location:	Date:		
Civil & Structural Challenge & Success	Client:	Check:	Job No:	
Green Design For Our Environment	Subject: I	Date:		
FOOTING DESIGN	(SEE COMPUTER FESI	GN OUTCO	мғ)	
- SLAB-ON-GRADE				
4"THICK.:	Aspo! = Psbd = (0.0018) = 0.00061x2	(41/11.)(127/	2)	
use wwf 60	(6-W6×W6 (As=0.12 N2)			
- WALL FORTING.		-		
POOF WOL = (15 pof) (40) POOF WIL = (25 pof) (40)	(2) = 300 plf (2) = 500 plf			
)(8'+8')=60 plf			
FLOOR WOL = (95#)(12/16				
W TL = Wpc + W		<i>(</i>		
	160+71.24)+(237.75 plf) plf)+(237.75 plf)+(500		(+)	
	LL SI			
- PECK FOOTING	+PLL = (1234 ×2)+(6701 ×	2) = 246E	# LC	
	Pu =(461 x2) +(2636 x2)=			
	Page 6 of 53			

2207 Mercer Island House Addition

Roof							
Member Name	Results	Current Solution	Comments				
Wall: Header	Passed	1 piece(s) 4 x 8 DF No.2					
Main Level							
Member Name	Results	Current Solution	Comments				
Wall: Header (Exterior)	Passed	1 piece(s) 6 x 8 DF No.2					
Deck: Joist (DJ1a)	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC					
Deck: Joist (DJ1b)	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC					
Floor: Joist (FJ1a)	Passed	1 piece(s) 2 x 10 DF No.2 @ 12" OC					
Floor: Joist (FJ1b)	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC					
Floor: Joist (FJ1c)	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC					
Deck: Drop Beam	Passed	1 piece(s) 6 x 10 DF No.1					
Deck: Drop Beam	Passed	1 piece(s) 6 x 10 DF No.1					
Floor: Flush Beam(FB1a)	Passed	1 piece(s) 3 1/2" x 9 1/2" 2.2E Parallam® PSL					
Copy of Floor: Flush Beam(FB1a)	Passed	1 piece(s) 3 1/2" x 9 1/2" 2.2E Parallam® PSL					
Basement							
Member Name	Results	Current Solution	Comments				
Deck: Joist	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC					
Deck: Drop Beam	Passed	1 piece(s) 6 x 10 DF No.1					

ForteWEB Software Operator Job Notes Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com 8244 SE 30th Street Mercer Island, WA 98040 Page 7 of 53

Roof, Wall: Header 1 piece(s) 4 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2117 @ 0	3281 (1.50")	Passed (65%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1529 @ 8 3/4"	3502	Passed (44%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2778 @ 2' 7 1/2"	3438	Passed (81%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.048 @ 2' 7 1/2"	0.175	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.078 @ 2' 7 1/2"	0.262	Passed (L/813)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	193 @ 5' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	162 @ 5"	4872	Passed (3%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	253 @ mid-span	2425	Passed (10%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.021 @ mid-span	0.350	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.58	1.00	Passed (58%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code: IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Lateral deflection criteria: Wind (L/180)
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	804	1312	2116	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	804	1312	2116	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 3" o/c	
Bottom Edge (Lu)	5' 3" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Lateral Connections								
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing		
Left	2X	Hem Fir	Nails	10d x 3" Box (End)	3			
Right	2X	Hem Fir	Nails	10d x 3" Box (End)	3			

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 5' 3"	20'	15.0	25.0	Default Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	4'	30.6	

ASCE/SEI 7 Sec. 30.4: Exposure Category (C), Mean Roof Height (16' 9 5/8"), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Fo	orteWEB Software Operator	Job Notes	
CS (4	3	8244 SE 30th Street Mercer Island, WA 98040 Page 8	of we

Main Level, Wall: Header (Exterior) 1 piece(s) 6 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2648 @ 0	5156 (1.50")	Passed (51%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1891 @ 9"	5376	Passed (35%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	3475 @ 2' 7 1/2"	3706	Passed (94%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Vert Live Load Defl. (in)	0.042 @ 2' 7 1/2"	0.175	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Vert Total Load Defl. (in)	0.069 @ 2' 7 1/2"	0.262	Passed (L/918)		1.0 D + 0.75 L + 0.75 S (All Spans)
Lat Member Reaction (lbs)	193 @ 5' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	150 @ 7"	7480	Passed (2%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	253 @ mid-span	3781	Passed (7%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.007 @ mid-span	0.350	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.73	1.00	Passed (73%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code: IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Lateral deflection criteria: Wind (L/180)
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1043	893	1247	3183	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1043	893	1247	3183	None

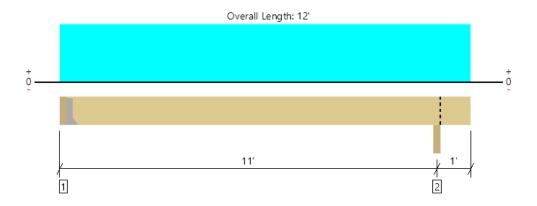
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 3" o/c	
Bottom Edge (Lu)	5' 3" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Lateral Connections								
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing		
Left	2X	Hem Fir	Nails	8d x 2.5" Box (Toe)	3			
Right	2X	Hem Fir	Nails	8d x 2.5" Box (Toe)	3			

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	10.4			
1 - Uniform (PSF)	0 to 5' 3"	19'	15.0	-	25.0	Roof Load
2 - Uniform (PSF)	0 to 5' 3"	8' 6"	12.0	40.0	-	Floor Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	4'	30.6	


ASCE/SEI 7 Sec. 30.4: Exposure Category (C), Mean Roof Height (16' 9 5/8"), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com	8244 SE 30th Street Mercer Island, WA 98040 Page 9	oi V

Main Level, Deck: Joist (DJ1a) 1 piece(s) 2 x 10 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	499 @ 3 1/2"	1406 (1.50")	Passed (35%)		1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	427 @ 1' 3/4"	1665	Passed (26%)	1.00	1.0 D + 1.0 L (Alt Spans)
Moment (Ft-lbs)	1334 @ 5' 7 11/16"	2029	Passed (66%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.150 @ 5' 7 3/4"	0.268	Passed (L/859)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.174 @ 5' 7 3/4"	0.535	Passed (L/739)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 9 1/4" HF beam	3.50"	Hanger ¹	1.50"	75	452	527	See note 1
2 - Beam - HF	3.50"	3.50"	1.50"	85	512	597	Blocking

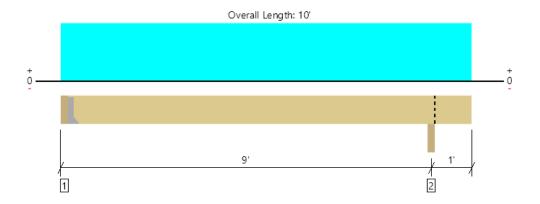
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- $\bullet \ \, \text{At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger } \\$
- $\bullet\,\,^{\text{1}}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 2" o/c	
Bottom Edge (Lu)	11' 9" o/c	

 $[\]bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5		

Refer to manufacturer notes and instructions for proper installation and use of all connectors.


			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12'	16"	10.0	60.0	Deck Load

Member Notes	
Deck Joist (DJ1a)	

ForteWEB Software Operator	Job Notes	
Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com	8244 SE 30th Street Mercer Island, WA 98040 Page 10	of

Main Level, Deck: Joist (DJ1b) 1 piece(s) 2 x 10 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	406 @ 3 1/2"	1406 (1.50")	Passed (29%)		1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	334 @ 1' 3/4"	1665	Passed (20%)	1.00	1.0 D + 1.0 L (Alt Spans)
Moment (Ft-lbs)	881 @ 4' 7 5/8"	2029	Passed (43%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.065 @ 4' 7 3/4"	0.218	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.076 @ 4' 7 3/4"	0.435	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 9 1/4" HF beam	3.50"	Hanger ¹	1.50"	61	372	433	See note 1
2 - Beam - HF	3.50"	3.50"	1.50"	72	433	505	Blocking

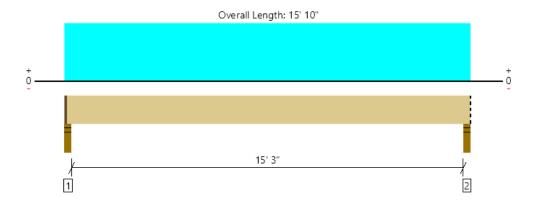
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 9" o/c	
Bottom Edge (Lu)	9' 9" o/c	

 $[\]bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5		

Refer to manufacturer notes and instructions for proper installation and use of all connectors.


			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 10'	16"	10.0	60.0	Deck Load

Member Notes	
Deck Joist (DJ1b)	

ForteWEB Software Operator	Job Notes	
Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com	8244 SE 30th Street Mercer Island, WA 98040 Page 11	O.

Main Level, Floor: Joist (FJ1a) 1 piece(s) 2 x 10 DF No.2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	406 @ 2 1/2"	1367 (2.25")	Passed (30%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	356 @ 1' 3/4"	1665	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1545 @ 7' 11"	2029	Passed (76%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.321 @ 7' 11"	0.385	Passed (L/576)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.418 @ 7' 11"	0.771	Passed (L/443)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- · Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	95	317	412	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	3.50"	1.50"	95	317	412	Blocking

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 2" o/c	
Bottom Edge (Lu)	15' 9" o/c	

 $\bullet \mbox{Maximum allowable bracing intervals based on applied load.}$

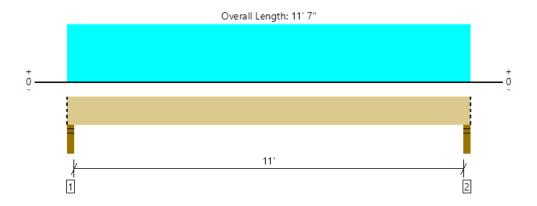
			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 15' 10"	12"	12.0	40.0	Default Load

Member Notes

Floor joist (FJ1a)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by S. Cho

ForteWEB Software Operator	Job Notes	
Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com	8244 SE 30th Street Mercer Island, WA 98040 Page 12	of

4/19/2022 3:08:03 AM UTC

Main Level, Floor: Joist (FJ1b) 1 piece(s) 2 x 10 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	402 @ 2 1/2"	2126 (3.50")	Passed (19%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	328 @ 1' 3/4"	1665	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1081 @ 5' 9 1/2"	2029	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.118 @ 5' 9 1/2"	0.279	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.153 @ 5' 9 1/2"	0.558	Passed (L/874)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- · Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	93	309	402	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	93	309	402	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 7" o/c	
Bottom Edge (Lu)	11' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

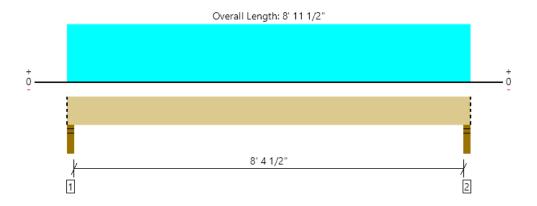
			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 11' 7"	16"	12.0	40.0	Default Load

Member Notes

Floor joist (FJ1b)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by S. Cho

ForteWEB Software Operator	Job Notes	
3	8244 SE 30th Street Mercer Island, WA 98040 Page 13	O

4/19/2022 3:08:03 AM UTC

Main Level, Floor: Joist (FJ1c) 1 piece(s) 2 x 10 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	311 @ 2 1/2"	2126 (3.50")	Passed (15%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	237 @ 1' 3/4"	1665	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	632 @ 4' 5 3/4"	2029	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.040 @ 4' 5 3/4"	0.214	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.052 @ 4' 5 3/4"	0.427	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- · Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	72	239	311	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	72	239	311	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' o/c	
Bottom Edge (Lu)	9' o/c	

 $[\]bullet \mbox{Maximum allowable bracing intervals based on applied load. } \\$

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 8' 11 1/2"	16"	12.0	40.0	Default Load

Member Notes

Floor joist (FJ1b)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by S. Cho

ForteWEB Software Operator	Job Notes	
Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com	8244 SE 30th Street Mercer Island, WA 98040	Page 14 c

4/19/2022 3:08:03 AM UTC

Main Level, Deck: Drop Beam 1 piece(s) 6 x 10 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3035 @ 4"	18906 (5.50")	Passed (16%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2459 @ 1' 3"	5922	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	9004 @ 6' 7"	9307	Passed (97%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.335 @ 6' 7"	0.417	Passed (L/447)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.403 @ 6' 7"	0.625	Passed (L/372)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	5.50"	5.50"	1.50"	507	2528	3035	None
2 - Column - HF	5.50"	5.50"	1.50"	507	2528	3035	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	13' 2" o/c	
Bottom Edge (Lu)	13' 2" o/c	

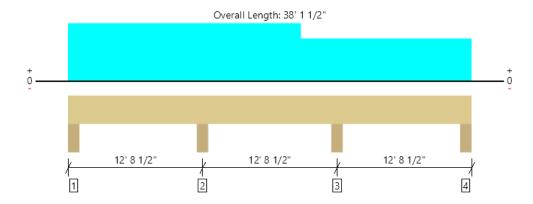
[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 13' 2"	N/A	13.2		
1 - Uniform (PLF)	0 to 13' 2" (Top)	N/A	63.8	384.0	Linked from: Deck: Joist, Support 2

Member Notes

Deck Beam (DB1a)

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by S. Cho

ForteWEB Software Operator	Job Notes	
	8244 SE 30th Street Mercer Island, WA 98040 Page 15	O

Main Level, Deck: Drop Beam 1 piece(s) 6 x 10 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7935 @ 12' 8 1/2"	18906 (5.50")	Passed (42%)		1.0 D + 1.0 L (Adj Spans)
Shear (lbs)	3550 @ 11' 8 1/4"	5922	Passed (60%)	1.00	1.0 D + 1.0 L (Adj Spans)
Moment (Ft-lbs)	-9520 @ 12' 8 1/2"	9307	Passed (102%)	1.00	1.0 D + 1.0 L (Adj Spans)
Live Load Defl. (in)	0.281 @ 6' 3 1/16"	0.412	Passed (L/528)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.318 @ 6' 2 3/8"	0.619	Passed (L/466)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	5.50"	5.50"	1.50"	461	2636/-288	3097/- 288	None
2 - Column - HF	5.50"	5.50"	2.31"	1234	6701	7935	None
3 - Column - HF	5.50"	5.50"	1.86"	995	5411	6406	None
4 - Column - HF	5.50"	5.50"	1.50"	353	1976/-278	2329/- 278	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	38' 2" o/c	
Bottom Edge (Lu)	6" o/c	

[•]Maximum allowable bracing intervals based on applied load.

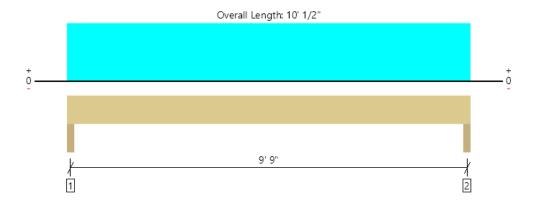
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 38' 1 1/2"	N/A	13.2		
1 - Uniform (PSF)	0 to 22' (Top)	7' 6"	10.0	60.0	
2 - Uniform (PSF)	22' to 38' 1 1/2" (Top)	5' 6"	10.0	60.0	

Member Notes

Deck Beam (DB1a)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by S. Cho

ForteWEB Software Operator	Job Notes	
Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com	8244 SE 30th Street Mercer Island, WA 98040	Page 16

4/19/2022 3:08:03 AM UTC

Main Level, Floor: Flush Beam(FB1a) 1 piece(s) 3 1/2" x 9 1/2" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3577 @ 2"	7656 (3.50")	Passed (47%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2805 @ 1' 1"	6428	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	8393 @ 5' 1/4"	13057	Passed (64%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.216 @ 5' 1/4"	0.243	Passed (L/539)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.285 @ 5' 1/4"	0.485	Passed (L/408)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	3.50"	3.50"	1.64"	866	2711	3577	None
2 - Column - HF	3.50"	3.50"	1.64"	866	2711	3577	None

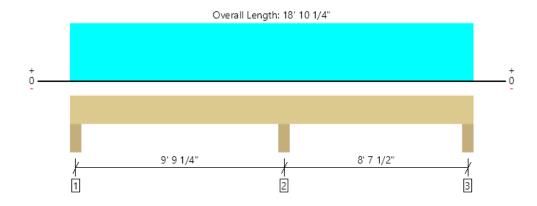
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 1" o/c	
Bottom Edge (Lu)	10' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 10' 1/2"	N/A	10.4		
1 - Uniform (PSF)	0 to 10' 1/2" (Front)	8'	12.0	40.0	Default Load
2 - Uniform (PSF)	0 to 10' 1/2" (Back)	5' 6"	12.0	40.0	Default Load

Member Notes

Interior Floor Beam (FB1a)


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by S. Cho

Main Level, Copy of Floor: Flush Beam(FB1a) 1 piece(s) 3 1/2" x 9 1/2" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8124 @ 10'	12031 (5.50")	Passed (68%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3487 @ 8' 11 3/4"	6428	Passed (54%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-7452 @ 10'	13057	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.152 @ 4' 10 9/16"	0.242	Passed (L/764)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.187 @ 4' 9 3/4"	0.483	Passed (L/620)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	5.50"	5.50"	1.50"	704	2443/-238	3147/- 238	None
2 - Column - HF	5.50"	5.50"	3.71"	1966	6158	8124	None
3 - Column - HF	5.50"	5.50"	1.50"	580	2211/-393	2791/- 393	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' 10" o/c	
Bottom Edge (Lu)	18' 10" o/c	

[•]Maximum allowable bracing intervals based on applied load.

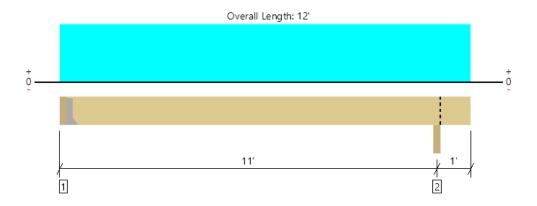
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 18' 10 1/4"	N/A	10.4		
1 - Uniform (PSF)	0 to 18' 10 1/4" (Front)	8'	12.0	40.0	Default Load
2 - Uniform (PSF)	0 to 18' 10 1/4" (Back)	5' 6"	12.0	40.0	Default Load

Member Notes

Interior Floor Beam (FB1a)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by S. Cho

ForteWEB	Software Operator	Job Notes
Sung Cho CS2 Engine (425) 408-: sung.cho@	ers.com	8244 SE 30th Street Mercer Island, WA 98040 Page 18

4/19/2022 3:08:03 AM UTC

Basement, Deck: Joist 1 piece(s) 2 x 10 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	499 @ 3 1/2"	1406 (1.50")	Passed (35%)		1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	427 @ 1' 3/4"	1665	Passed (26%)	1.00	1.0 D + 1.0 L (Alt Spans)
Moment (Ft-lbs)	1334 @ 5' 7 11/16"	2029	Passed (66%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.150 @ 5' 7 3/4"	0.268	Passed (L/859)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.174 @ 5' 7 3/4"	0.535	Passed (L/739)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 9 1/4" HF beam	3.50"	Hanger ¹	1.50"	75	452	527	See note 1
2 - Beam - DF	3.50"	3.50"	1.50"	85	512	597	Blocking

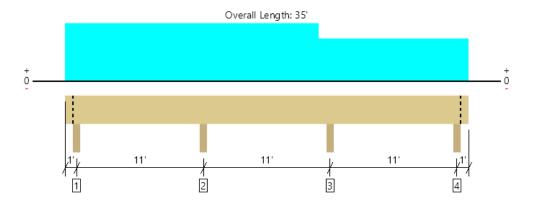
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- $\bullet \ \, \text{At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger } \\$
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 2" o/c	
Bottom Edge (Lu)	11' 9" o/c	

 $[\]bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5		

Refer to manufacturer notes and instructions for proper installation and use of all connectors.


			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12'	16"	10.0	60.0	Deck Load

Member Notes	
Deck Joist	

ForteWEB Software Operator	Job Notes	
Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com	8244 SE 30th Street Mercer Island, WA 98040 Page 19	O.

Basement, Deck: Drop Beam 1 piece(s) 6 x 10 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7025 @ 12'	12031 (3.50")	Passed (58%)		1.0 D + 1.0 L (Adj Spans)
Shear (lbs)	3129 @ 11' 3/4"	5922	Passed (53%)	1.00	1.0 D + 1.0 L (Adj Spans)
Moment (Ft-lbs)	-7452 @ 12'	9307	Passed (80%)	1.00	1.0 D + 1.0 L (Adj Spans)
Live Load Defl. (in)	0.175 @ 6' 2 15/16"	0.367	Passed (L/756)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.197 @ 6' 2 3/8"	0.550	Passed (L/669)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	3.50"	3.50"	1.50"	478	2681	3159	Blocking
2 - Column - HF	3.50"	3.50"	2.04"	1084	5941	7025	None
3 - Column - HF	3.50"	3.50"	1.71"	902	4972	5874	None
4 - Column - HF	3.50"	3.50"	1.50"	365	2005	2370	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu) 35' o/c		
Bottom Edge (Lu)	35' o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 35'	N/A	13.2		
1 - Uniform (PSF)	0 to 22' (Top)	7' 6"	10.0	60.0	
2 - Uniform (PSF)	22' to 35' (Top)	5' 6"	10.0	60.0	

Member Notes

Deck Beam (DB1a)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by S. Cho

ForteWEB Software Operator	Job Notes	
Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com	8244 SE 30th Street Mercer Island, WA 98040 Page 20	of W

4/19/2022 3:08:03 AM UTC

ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16

File Name: 2207 Mercer Island House Addition

P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com Park's Residence Addition

Project Title: Engineer: Project ID: S. Cho 2207

Project Descr: Remodel and addition of Single Family Residential

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

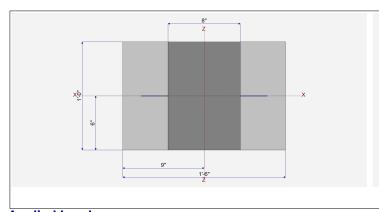
Wall Footing

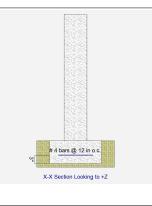
LIC#: KW-06013944, Build:20.23.08.01 CS2 ENGINEERS (c) ENERCALC INC 1983-2023

DESCRIPTION: Typical Wall Footing

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16


Load Combinations Used: IBC 2018


General Information

Material Properties			Soil Design Values		
f'c : Concrete 28 day strength	=	2.50 ksi	Allowable Soil Bearing	=	3.0 ksf
fy : Rebar Yield	=	60.0 ksi	Increase Bearing By Footing Weight	=	No
Ec : Concrete Elastic Modulus	=	3,122.0 ksi	Soil Passive Resistance (for Sliding)	=	250.0 pcf
Concrete Density	=	145.0 pcf	Soil/Concrete Friction Coeff.	=	0.30
Values Flexure	=	0.90			
Shear	=	0.750	Increases based on footing Depth		
Analysis Settings			Reference Depth below Surface	=	ft
Min Steel % Bending Reinf.	=		Allow. Pressure Increase per foot of depth	=	ksf
Min Allow % Temp Reinf.	=	0.00180	when base footing is below	=	ft
Min. Overturning Safety Factor	=	1.0:1	Increases based on footing Width		
Min. Sliding Safety Factor	=	1.0:1	Allow. Pressure Increase per foot of width	=	ksf
AutoCalc Footing Weight as DL:		Yes	when footing is wider than	=	ft
			Adjusted Allowable Bearing Pressure	=	3.0 ksf

Dimensions Reinforcing

Footing Width 1.50 ft Footing Thickness 8.0 in Bars along X-X Axis Wall Thickness Rebar Centerline to Edge of Concrete... 8.0 in Bar spacing 12.00 Wall center offset at Bottom of footing = 3.0 in Reinforcing Bar Size # 4 from center of footing 0 in

Applied Loads

		D	Lr	L	S	W	E	Н
P : Column Load	=	0.5313		0.2378	0.50			k
OB : Overburden	=							ksf
V-x	=							k
M-zz	=							k-ft
Vx applied	=	in a	bove top of	footing				

P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com

Park's Residence Addition Project Title: S. Cho

Engineer: Project ID: 2207

Remodel and addition of Single Family Residential Project Descr:

House

Wall Footing

Project File: 2207 Mercer Island Park Residence Remodel.ec6

LIC#: KW-06013944, Build:20.23.08.01

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

DESCRIPTION: Typical Wall Footing

IGN SU	MMARY	Design OK			
Fa	actor of Safety	Item	Applied	Capacity	Governing Load Combination
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
Ut	tilization Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.2733	Soil Bearing	0.8198 ksf	3.0 ksf	+D+0.750L+0.750S
PASS	0.02335	Z Flexure (+X)	0.1001 k-ft	4.288 k-ft	+1.20D+0.50L+1.60S
PASS	0.008214	Z Flexure (-X)	0.03522 k-ft	4.288 k-ft	+0.90D
PASS	n/a	1-way Shear (+X)	0.0 psi	75.0 psi	n/a
PASS	0.0	1-way Shear (-X)	0.0 psi	0.0 psi	n/a

Detailed Results

Soi			

Rotation Axis &			Actual Soil Bea	aring Stress	Actual / Allowable	
Load Combination	Gross Allowable	Xecc	-X	+X	Ratio	
, D Only	3.0 ksf	0.0 in	0.4509 ksf	0.4509 ksf	0.150	
, +D+L	3.0 ksf	0.0 in	0.6094 ksf	0.6094 ksf	0.203	
, +D+S	3.0 ksf	0.0 in	0.7842 ksf	0.7842 ksf	0.261	
, +D+0.750L	3.0 ksf	0.0 in	0.5698 ksf	0.5698 ksf	0.190	
, +D+0.750L+0.750S	3.0 ksf	0.0 in	0.8198 ksf	0.8198 ksf	0.273	
, +0.60D	3.0 ksf	0.0 in	0.2705 ksf	0.2705 ksf	0.090	
Overturning Stability					Units: k-ft	

Rotation Axis & Load Combination... **Overturning Moment Resisting Moment Stability Ratio Status**

Footing Has NO Overturning

Sliding Stability

Force Application Axis Load Combination... **Sliding Force Resisting Force** Sliding SafetyRatio **Status**

Footing Has NO Sliding

Footing Flexure

Flexure Axis & Load Combination	Mu	Which	Tension @ Bot.	As Req'd	Gvrn. As	Actual As	Phi*Mn	
Flexure Axis & Load Combination	k-ft	Side ?	or Top ?	in^2	in^2	in^2	k-ft	Status
, +1.40D	0.05479	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.40D	0.05479	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+1.60L	0.06898	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+1.60L	0.06898	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+1.60L+0.50S	0.08345	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+1.60L+0.50S	0.08345	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L	0.05385	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L	0.05385	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D	0.04697	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D	0.04697	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L+1.60S	0.1001	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L+1.60S	0.1001	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+1.60S	0.09326	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+1.60S	0.09326	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L+0.50S	0.06831	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L+0.50S	0.06831	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L+0.70S	0.0741	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L+0.70S	0.0741	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +0.90D	0.03522	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +0.90D	0.03522	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
ne Way Shear					·		Units : k	

O.	ie	**	ay	JI	icai	

Load Combination	Vu @ -X Vu @	@ +X	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	0 psi	0 psi	0 psi	75 psi	0	OK
+1.20D+1.60L	0 psi	0 psi	0 psi	75 psi	0	OK
+1.20D+1.60L+0.50S	0 psi	0 psi	0 psi	75 psi	0	OK

P.O. Box 13423 TEL. 425.408.2748

Park's Residence Addition S. Cho

Project Title: Engineer: Project ID: 2207

Project Descr: Remodel and addition of Single Family Residential

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

Wall Footing

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

DESCRIPTION: Typical Wall Footing

LIC#: KW-06013944, Build:20.23.08.01

One Way Shear Units: k

Load Combination	Vu @ -X	Vu @	+X	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.20D+0.50L	0	psi	0 psi	0 psi	75 psi	0	OK
+1.20D	0	psi .	0 psi	0 psi	75 psi	0	OK
+1.20D+0.50L+1.60S	0	psi	0 psi	0 psi	75 psi	0	OK
+1.20D+1.60S	0	psi	0 psi	0 psi	75 psi	0	OK
+1.20D+0.50L+0.50S	0	psi .	0 psi	0 psi	75 psi	0	OK
+1.20D+0.50L+0.70S	0	psi .	0 psi	0 psi	75 psi	0	OK
+0.90D	0	psi	0 psi	0 psi	75 psi	0	OK

DESCRIPTION: Deck footing (F3.0)

P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com

Project Title: Park's Residence Addition

S. Cho Engineer: Project ID: 2207

Remodel and addition of Single Family Residential Project Descr:

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

General Footing

LIC#: KW-06013944, Build:20.23.08.01

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

Code References

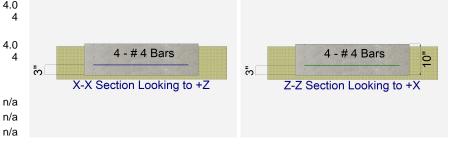
Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combinations Used: IBC 2018

General Information

Material Properties f'c: Concrete 28 day strength fy: Rebar Yield Ec: Concrete Elastic Modulus Concrete Density () Values Flexure	= = = =	6 3,12 14	.50 ksi 0.0 ksi 2.0 ksi 5.0 pcf .90	Soil Design Values Allowable Soil Bearing Soil Density Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = = =	3.0 ksf 110.0 pcf No 250.0 pcf 0.30
Shear Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf. Min. Overturning Safety Factor	=	_	0.00180 1.0 : 1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= =	0.750 ft 0.250 ksf ft
Min. Sliding Safety Factor Add Ftg Wt for Soil Pressure		= :	1.0 : 1 Yes	Increases based on footing plan dimension Allowable pressure increase per foot of de		
Use ftg wt for stability, moments & shea Add Pedestal Wt for Soil Pressure	rs	:	Yes No	when max. length or width is greater than	_	ksf ft
Use Pedestal wt for stability, mom & she	ear	:	No		_	п

Dimensions


=	3.0 ft
=	3.0 ft
=	10.0 in
	=

Pedestal dimensions... px: parallel to X-X Axis in pz : parallel to Z-Z Axis in Height in Rebar Centerline to Edge of Concrete... at Bottom of footing 3.0 in

Ζ 3-0" ။ က Dist. Ż Edge 3'-0"

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	4.0 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size	=	#	4.0
Bandwidth Distribution Ch Direction Requiring Closer	•		4
			n/a
# Bars required within zone)		n/a
# Bars required on each sic	le of zone		n/a

Applied Loads

		D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	= =	2.468		13.402				k ksf
M-xx M-zz	= =							k-ft k-ft
V-x V-z	= =							k k

P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com Project Title: Engineer: Project ID: Park's Residence Addition S. Cho

2207

Project Descr: Remodel and addition of Single Family Residential

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

General Footing

LIC#: KW-06013944, Build:20.23.08.01 CS2 ENGINEERS

3.188

0.0

(c) ENERCALC INC 1983-2023

DESIGN SUMMARY

DESCRIPTION: Deck footing (F3.0)

SIGN SI	<i>JMMARY</i>				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.5911	Soil Bearing	1.884 ksf	3.188 ksf	+D+L about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.3802	Z Flexure (+X)	3.051 k-ft/ft	8.024 k-ft/ft	+1.20D+1.60L
PASS	0.3802	Z Flexure (-X)	3.051 k-ft/ft	8.024 k-ft/ft	+1.20D+1.60L
PASS	0.3802	X Flexure (+Z)	3.051 k-ft/ft	8.024 k-ft/ft	+1.20D+1.60L
PASS	0.3802	X Flexure (-Z)	3.051 k-ft/ft	8.024 k-ft/ft	+1.20D+1.60L
PASS	0.4003	1-way Shear (+X)	30.022 psi	75.0 psi	+1.20D+1.60L
PASS	0.4003	1-way Shear (-X)	30.022 psi	75.0 psi	+1.20D+1.60L
PASS	0.4003	1-way Shear (+Z)	30.022 psi	75.0 psi	+1.20D+1.60L
PASS	0.4003	1-way Shear (-Z)	30.022 psi	75.0 psi	+1.20D+1.60L
PASS	0.7969	2-way Punching	119.534 psi	150.0 psi	+1.20D+1.60L
talla d D	16				

Detailed Results

Soil Bearing								
Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowable	(ir	1)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	3.188	n/a	0.0	0.3951	0.3951	n/a	n/a	0.124
X-X, +D+L	3.188	n/a	0.0	1.884	1.884	n/a	n/a	0.591
X-X, +D+0.750L	3.188	n/a	0.0	1.512	1.512	n/a	n/a	0.474
X-X, +0.60D	3.188	n/a	0.0	0.2370	0.2370	n/a	n/a	0.074
Z-Z, D Only	3.188	0.0	n/a	n/a	n/a	0.3951	0.3951	0.124
Z-Z, +D+L	3.188	0.0	n/a	n/a	n/a	1.884	1.884	0.591
Z-Z, +D+0.750L	3.188	0.0	n/a	n/a	n/a	1.512	1.512	0.474

Overturning Stability

Z-Z, +0.60D

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
Footing Has NO Overturning		-		

n/a

n/a

0.2370

0.2370

0.074

All units k

n/a

Sliding Stability

Force Application Axis Load Combination... **Sliding Force Resisting Force Stability Ratio Status** Footing Has NO Sliding

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.4319	+Z	Bottom	0.2160	AsMin	0.2667	8.024	ок
X-X, +1.40D	0.4319	-Z	Bottom	0.2160	AsMin	0.2667	8.024	OK
X-X, +1.20D+1.60L	3.051	+Z	Bottom	0.2160	AsMin	0.2667	8.024	OK
X-X, +1.20D+1.60L	3.051	-Z	Bottom	0.2160	AsMin	0.2667	8.024	OK
X-X, +1.20D+0.50L	1.208	+Z	Bottom	0.2160	AsMin	0.2667	8.024	OK
X-X, +1.20D+0.50L	1.208	-Z	Bottom	0.2160	AsMin	0.2667	8.024	OK
X-X, +1.20D	0.3702	+Z	Bottom	0.2160	AsMin	0.2667	8.024	OK
X-X, +1.20D	0.3702	-Z	Bottom	0.2160	AsMin	0.2667	8.024	OK
X-X, +0.90D	0.2777	+Z	Bottom	0.2160	AsMin	0.2667	8.024	OK
X-X, +0.90D	0.2777	-Z	Bottom	0.2160	AsMin	0.2667	8.024	OK
Z-Z, +1.40D	0.4319	-X	Bottom	0.2160	AsMin	0.2667	8.024	OK
Z-Z, +1.40D	0.4319	+X	Bottom	0.2160	AsMin	0.2667	8.024	OK
Z-Z, +1.20D+1.60L	3.051	-X	Bottom	0.2160	AsMin	0.2667	8.024	OK
Z-Z, +1.20D+1.60L	3.051	+X	Bottom	0.2160	AsMin	0.2667	8.024	ok
Z-Z, +1.20D+0.50L	1.208	-X	Bottom	0.2160	AsMin	0.2667	8.024	ok
Z-Z, +1.20D+0.50L	1.208	+X	Bottom	0.2160	AsMin	0.2667	8.024	oĸ
Z-Z, +1.20D	0.3702	-X	Bottom	0.2160	AsMin	0.2667	8.024	oĸ

DESCRIPTION: Deck footing (F3.0)

P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com Park's Residence Addition S. Cho

Project Title: Engineer: Project ID: 2207

Project Descr: Remodel and addition of Single Family Residential

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

General Footing

LIC#: KW-06013944, Build:20.23.08.01

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

Footing Flexure

•								
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
Z-Z, +1.20D	0.3702	+X	Bottom	0.2160	AsMin	0.2667	8.024	ок
Z-Z, +0.90D	0.2777	-X	Bottom	0.2160	AsMin	0.2667	8.024	OK
Z-Z, +0.90D	0.2777	+X	Bottom	0.2160	AsMin	0.2667	8.024	OK

One Way Shear

Load Combination	Vu @ -X	Vu @ +X	Vu @ -Z	Vu @ +Z		Vu:Max	Phi Vn	Vu / Phi*\	/n Status
+1.40D	4.25 ps	i 4.25 ps	si 4.25	psi 4.	.25 psi	4.25 ps	i 75.00	psi 0	0.06 OK
+1.20D+1.60L	30.02 ps	i 30.02 ps	si 30.02	2 psi 30.	.02 psi	i 30.02 ps	i 75.00	psi 0	0.40 OK
+1.20D+0.50L	11.89 ps	i 11.89 ps	si 11.89) psi 11.	.89 psi	i 11.89 ps	i 75.00	psi 0).16 OK
+1.20D	3.64 ps	i 3.64 ps	si 3.64	lpsi 3.	.64 psi	i 3.64 ps	i 75.00	psi 0	0.05 OK
+0.90D	2.73 ps	i 2.73 ps	si 2.73	psi 2.	.73 psi	i 2.73 ps	i 75.00	psi 0	0.04 OK
Two-Way "Punching" Shear								Allι	units k

Two-Way "Punching" Shear

Load Combination	Vu	Phi*Vn	Vu / Phi*Vn	Status
+1.40D	16.92 psi	150.00psi	0.1128	OK
+1.20D+1.60L	119.53 psi	150.00 psi	0.7969	OK
+1.20D+0.50L	47.33 psi	150.00 psi	0.3155	OK
+1.20D	14.51 psi	150.00 psi	0.09671	OK
+0.90D	10.88 psi	150.00 psi	0.07253	ОК

DESCRIPTION: Deck footing (F2.0)

P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com

2.0 ft

Project Title: Park's Residence Addition

Engineer: S. Cho Project ID: 2207

Remodel and addition of Single Family Residential Project Descr:

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

General Footing

LIC#: KW-06013944, Build:20.23.08.01

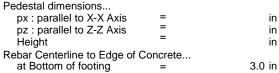
CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

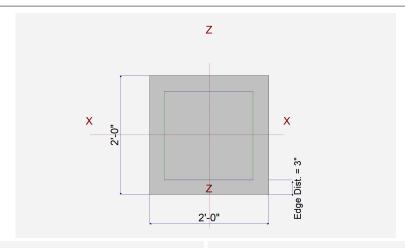
Load Combinations Used: IBC 2018

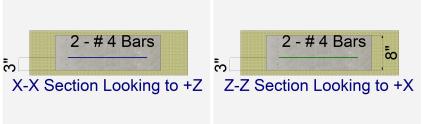

General Information

Material Properties				Soil Design Values		
f'c : Concrete 28 day strength =		= 2.50 ksi		Allowable Soil Bearing	=	3.0 ksf
fy : Rebar Yield	=	6	0.0 ksi	Soil Density	=	110.0 pcf
Ec : Concrete Elastic Modulus	=	,	2.0 ksi	Increase Bearing By Footing Weight	=	No .
Concrete Density	=	14	5.0 pcf	Soil Passive Resistance (for Sliding)	=	250.0 pcf
O Values Flexure	=	0	.90	Soil/Concrete Friction Coeff.	=	0.30
Shear	=	0.7	750	Increases based on footing Depth		
Analysis Settings				Footing base depth below soil surface	=	0.750 ft
Min Steel % Bending Reinf.		=	= Allow press. increase per foot of depth		=	0.250 ksf
Min Allow % Temp Reinf.		=	0.00180	when footing base is below	=	ft
Min. Overturning Safety Factor		=	1.0 : 1	· ·		
Min. Sliding Safety Factor		=	1.0 : 1	Increases based on footing plan dimension	n	
Add Ftg Wt for Soil Pressure		:	Yes	Allowable pressure increase per foot of de	pth	
Use ftg wt for stability, moments & she	ears	:	Yes	when may length or width is greater than	=	ksf
Add Pedestal Wt for Soil Pressure		:	No	when max. length or width is greater than	=	ft
Use Pedestal wt for stability, mom & s	hear	:	No		_	

Dimensions

Width parallel to X-X Axis


Length parallel to Z-Z Axis	=	2.0 ft
Footing Thickness	=	8.0 in
-		



Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	2.0 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size	= =	#	2.0
Bandwidth Distribution Direction Requiring Clos	•	.2)	

n/a # Bars required within zone n/a # Bars required on each side of zone n/a

Applied Loads

		D	Lr	L	S	w	E	Н
P : Column Load OB : Overburden	= =	0.9220		5.272				k ksf
M-xx M-zz	= =							k-ft k-ft
V-x V-z	= =							k k

P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com Project Title: Engineer: Project ID: Park's Residence Addition S. Cho

2207

Project Descr: Remodel and addition of Single Family Residential

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

General Footing

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

DESCRIPTION: Deck footing (F2.0)

DESIGN	SUMMARY	
PLUIUIT		

LIC#: KW-06013944, Build:20.23.08.01

ESIGN SU	MMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.5189	Soil Bearing	1.654 ksf	3.188 ksf	+D+L about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.2781	Z Flexure (+X)	1.193 k-ft/ft	4.288 k-ft/ft	+1.20D+1.60L
PASS	0.2781	Z Flexure (-X)	1.193 k-ft/ft	4.288 k-ft/ft	+1.20D+1.60L
PASS	0.2781	X Flexure (+Z)	1.193 k-ft/ft	4.288 k-ft/ft	+1.20D+1.60L
PASS	0.2781	X Flexure (-Z)	1.193 k-ft/ft	4.288 k-ft/ft	+1.20D+1.60L
PASS	0.3075	1-way Shear (+X)	23.059 psi	75.0 psi	+1.20D+1.60L
PASS	0.3075	1-way Shear (-X)	23.059 psi	75.0 psi	+1.20D+1.60L
PASS	0.3075	1-way Shear (+Z)	23.059 psi	75.0 psi	+1.20D+1.60L
PASS	0.3075	1-way Shear (-Z)	23.059 psi	75.0 psi	+1.20D+1.60L
PASS	0.6107	2-way Punching	91.599 psi	150.0 psi	+1.20D+1.60L
tallad Da	14				

Detailed Results

Beari	

oon boaring								
Rotation Axis &		Xecc	ecc Zecc Actual Soil Bearing Stress @ Location					
Load Combination	Gross Allowable	(ir	1)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	3.188	n/a	0.0	0.3363	0.3363	n/a	n/a	0.106
X-X, +D+L	3.188	n/a	0.0	1.654	1.654	n/a	n/a	0.519
X-X, +D+0.750L	3.188	n/a	0.0	1.325	1.325	n/a	n/a	0.416
X-X, +0.60D	3.188	n/a	0.0	0.2018	0.2018	n/a	n/a	0.063
Z-Z, D Only	3.188	0.0	n/a	n/a	n/a	0.3363	0.3363	0.106
Z-Z, +D+L	3.188	0.0	n/a	n/a	n/a	1.654	1.654	0.519
Z-Z, +D+0.750L	3.188	0.0	n/a	n/a	n/a	1.325	1.325	0.416
Z-Z, +0.60D	3.188	0.0	n/a	n/a	n/a	0.2018	0.2018	0.063

Overturning Stability

Rotation Axis &				
Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
Footing Has NO Overturning				
Cliding Ctability				All units k

Sliding Stability

Force Application Axis Load Combination... **Sliding Force Resisting Force Stability Ratio Status** Footing Has NO Sliding

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.1614	+Z	Bottom	0.1728	AsMin	0.20	4.288	ок
X-X, +1.40D	0.1614	-Z	Bottom	0.1728	AsMin	0.20	4.288	OK
X-X, +1.20D+1.60L	1.193	+Z	Bottom	0.1728	AsMin	0.20	4.288	OK
X-X, +1.20D+1.60L	1.193	-Z	Bottom	0.1728	AsMin	0.20	4.288	OK
X-X, +1.20D+0.50L	0.4678	+Z	Bottom	0.1728	AsMin	0.20	4.288	OK
X-X, +1.20D+0.50L	0.4678	-Z	Bottom	0.1728	AsMin	0.20	4.288	OK
X-X, +1.20D	0.1383	+Z	Bottom	0.1728	AsMin	0.20	4.288	OK
X-X, +1.20D	0.1383	-Z	Bottom	0.1728	AsMin	0.20	4.288	OK
X-X, +0.90D	0.1037	+Z	Bottom	0.1728	AsMin	0.20	4.288	OK
X-X, +0.90D	0.1037	-Z	Bottom	0.1728	AsMin	0.20	4.288	OK
Z-Z, +1.40D	0.1614	-X	Bottom	0.1728	AsMin	0.20	4.288	OK
Z-Z, +1.40D	0.1614	+X	Bottom	0.1728	AsMin	0.20	4.288	OK
Z-Z, +1.20D+1.60L	1.193	-X	Bottom	0.1728	AsMin	0.20	4.288	OK
Z-Z, +1.20D+1.60L	1.193	+X	Bottom	0.1728	AsMin	0.20	4.288	OK
Z-Z, +1.20D+0.50L	0.4678	-X	Bottom	0.1728	AsMin	0.20	4.288	ok
Z-Z, +1.20D+0.50L	0.4678	+X	Bottom	0.1728	AsMin	0.20	4.288	oĸ
Z-Z, +1.20D	0.1383	-X	Bottom	0.1728	AsMin	0.20	4.288	oĸ

P.O. Box 13423 TEL. 425.408.2748 Project Title: Engineer: Project ID: Project Descr: Park's Residence Addition S. Cho

2207

Remodel and addition of Single Family Residential

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

General Footing

LIC#: KW-06013944, Build:20.23.08.01

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

DESCRIPTION: Deck footing (F2.0)

Footing Flexure									
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. A in^2	As Actual in^2		ni*Mn k-ft	Status
Z-Z, +1.20D	0.1383	+X	Bottom	0.1728	AsMin	0.2	0	4.288	ок
Z-Z, +0.90D	0.1037	-X	Bottom	0.1728	AsMin	0.2	0	4.288	OK
Z-Z, +0.90D	0.1037	+X	Bottom	0.1728	AsMin	0.2	0	4.288	oĸ
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vu	@ -Z Vu	ı @ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	3.12 p	si	3.12 psi	3.12 psi	3.12 ps	i 3.12 psi	75.00 p	si 0.04	OK
+1.20D+1.60L	23.06 p	si	23.06 psi	23.06 psi	23.06 ps	i 23.06 psi	75.00 p	si 0.31	OK
+1.20D+0.50L	9.04 p	si	9.04 psi	9.04 psi	9.04 ps	i 9.04 psi	75.00 p	si 0.12	OK
+1.20D	2.67 p	si	2.67 psi	2.67 psi	2.67 ps	i 2.67 psi	75.00 p	si 0.04	OK
+0.90D	2.01 p	si	2.01 psi	2.01 psi	2.01 ps	i 2.01 psi	75.00 p	si 0.03	OK
Two-Way "Punching" Shear								All units	s k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn	1		Status
+1.40D		12.3	9 psi	150.00	psi	0.08261			OK
+1.20D+1.60L		91.6	0 psi	150.00	psi	0.6107			OK
+1.20D+0.50L		35.9	3 psi	150.00	psi	0.2395			oĸ
+1.20D		10.6	2 psi	150.00	psi	0.07081			OK
+0.90D		7.9	7 psi	150.00	psi	0.05311			OK

P.O. Box 13423 TEL. 425.408.2748

info@cs2engineers.com

Project Title: Park's Residence Addition

S. Cho Engineer: Project ID: 2207

Remodel and addition of Single Family Residential Project Descr:

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

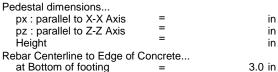
General Footing

LIC#: KW-06013944, Build:20.23.08.01 CS2 ENGINEERS (c) ENERCALC INC 1983-2023

DESCRIPTION: Interior Beam footing (F2.0)

Code References

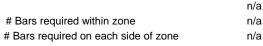
Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

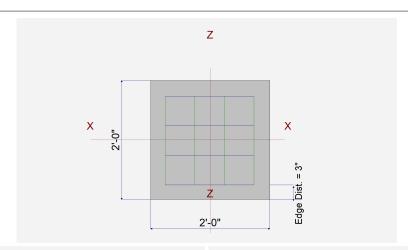

Load Combinations Used: IBC 2018

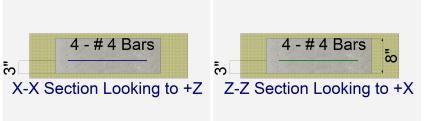
General Information

Soil Design Values	
= 2.50 ksi Allowable Soil Bearing = 3.0 ksf	
= 60.0 ksi Soil Density = 110.0 pcf	
s = 3,122.0 ksi Increase Bearing By Footing Weight = No	
= 145.0 pcf Soil Passive Resistance (for Sliding) = 250.0 pcf	
= 0.90 Soil/Concrete Friction Coeff. = 0.30	
= 0.750 Increases based on footing Depth	
= Allow press. increase per foot of depth = 0.250 ksf	
= 0.00180 when footing base is below = ft	
or = 1.0:1	
= 1.0 : 1 Increases based on footing plan dimension	
: Yes Allowable pressure increase per foot of depth	
nts & shears : Yes = ksf	
curo · No	
mom & shear : No	
= 145.0 pcf Soil Passive Resistance (for Sliding) = 250.0 pc = 0.90 Soil/Concrete Friction Coeff. = 0.30 = 0.750 Increases based on footing Depth Footing base depth below soil surface = 0.750 ft Allow press. increase per foot of depth = 0.250 ks = 0.00180 when footing base is below = ft = 1.0 : 1 Increases based on footing plan dimension : Yes Allowable pressure increase per foot of depth this & shears : Yes when max. length or width is greater than ft	sf

Dimensions


Width parallel to X-X Axis	=	2.0 ft
Length parallel to Z-Z Axis	=	2.0 ft
Footing Thickness	=	8.0 in




at Bottom of footing

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	4.0 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size	= =	#	4.0 4
Bandwidth Distribution C Direction Requiring Close	•	1.4.2)	,

Applied Loads

		D	Lr	L	S	w	E	Н
P : Column Load	=	1.966		6.158				k
OB : Overburden	= _							ksf
M-xx M-zz	=							k-ft
M-zz	=							k-ft
V-x	=							k
V-z	=							k

0.1872

0.3935

0.3935

0.3935

0.3935

0.7816

X Flexure (-Z)

1-way Shear (+X)

1-way Shear (-X)

1-way Shear (+Z)

1-way Shear (-Z)

2-way Punching

P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com

Project Title: Park's Residence Addition

S. Cho Engineer: Project ID: 2207

Remodel and addition of Single Family Residential Project Descr:

Project File: 2207 Mercer Island Park Residence Remodel.ec6

+1.20D+1.60L

+1.20D+1.60L

+1.20D+1.60L

+1.20D+1.60L

+1.20D+1.60L

+1.20D+1.60L

House

8.153 k-ft/ft

75.0 psi

75.0 psi

75.0 psi

75.0 psi

150.0 psi

General Footing

LIC#: KW-06013944, Build:20.23.08.01

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

DESCRIPTION: Interior Beam footing (F2.0)

IGN SU	JMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.6704	Soil Bearing	2.137 ksf	3.188 ksf	+D+L about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.1872	Z Flexure (+X)	1.527 k-ft/ft	8.153 k-ft/ft	+1.20D+1.60L
PASS	0.1872	Z Flexure (-X)	1.527 k-ft/ft	8.153 k-ft/ft	+1.20D+1.60L
PASS	0.1872	X Flexure (+Z)	1.527 k-ft/ft	8.153 k-ft/ft	+1.20D+1.60L

1.527 k-ft/ft

29.512 psi

29.512 psi

29.512 psi

29.512 psi

117.235 psi

PASS Detailed Results

PASS

PASS

PASS

PASS

PASS

Soil Bearing								
Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowable	(in	1)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	3.188	n/a	0.0	0.5973	0.5973	n/a	n/a	0.187
X-X, +D+L	3.188	n/a	0.0	2.137	2.137	n/a	n/a	0.670
X-X, +D+0.750L	3.188	n/a	0.0	1.752	1.752	n/a	n/a	0.550
X-X, +0.60D	3.188	n/a	0.0	0.3584	0.3584	n/a	n/a	0.112
Z-Z, D Only	3.188	0.0	n/a	n/a	n/a	0.5973	0.5973	0.187
Z-Z, +D+L	3.188	0.0	n/a	n/a	n/a	2.137	2.137	0.670
Z-Z, +D+0.750L	3.188	0.0	n/a	n/a	n/a	1.752	1.752	0.550
Z-Z, +0.60D	3.188	0.0	n/a	n/a	n/a	0.3584	0.3584	0.112

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
Footing Has NO Overturning				

Sliding Stability

All units k

Force Application Axis Load Combination... **Sliding Force Resisting Force Stability Ratio** Status Footing Has NO Sliding

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.3441	+Z	Bottom	0.1728	AsMin	0.40	8.153	ок
X-X, +1.40D	0.3441	-Z	Bottom	0.1728	AsMin	0.40	8.153	OK
X-X, +1.20D+1.60L	1.527	+Z	Bottom	0.1728	AsMin	0.40	8.153	OK
X-X, +1.20D+1.60L	1.527	-Z	Bottom	0.1728	AsMin	0.40	8.153	OK
X-X, +1.20D+0.50L	0.6798	+Z	Bottom	0.1728	AsMin	0.40	8.153	OK
X-X, +1.20D+0.50L	0.6798	-Z	Bottom	0.1728	AsMin	0.40	8.153	OK
X-X, +1.20D	0.2949	+Z	Bottom	0.1728	AsMin	0.40	8.153	OK
X-X, +1.20D	0.2949	-Z	Bottom	0.1728	AsMin	0.40	8.153	OK
X-X, +0.90D	0.2212	+Z	Bottom	0.1728	AsMin	0.40	8.153	OK
X-X, +0.90D	0.2212	-Z	Bottom	0.1728	AsMin	0.40	8.153	OK
Z-Z, +1.40D	0.3441	-X	Bottom	0.1728	AsMin	0.40	8.153	OK
Z-Z, +1.40D	0.3441	+X	Bottom	0.1728	AsMin	0.40	8.153	OK
Z-Z, +1.20D+1.60L	1.527	-X	Bottom	0.1728	AsMin	0.40	8.153	OK
Z-Z, +1.20D+1.60L	1.527	+X	Bottom	0.1728	AsMin	0.40	8.153	OK
Z-Z, +1.20D+0.50L	0.6798	-X	Bottom	0.1728	AsMin	0.40	8.153	ok
Z-Z, +1.20D+0.50L	0.6798	+X	Bottom	0.1728	AsMin	0.40	8.153	ok
Z-Z, +1.20D	0.2949	-X	Bottom	0.1728	AsMin	0.40	8.153	OK

P.O. Box 13423 TEL. 425.408.2748

Park's Residence Addition S. Cho

Project Title: Engineer: Project ID: 2207

Project Descr: Remodel and addition of Single Family Residential

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

General Footing

LIC#: KW-06013944, Build:20.23.08.01

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

DESCRIPTION: Interior Beam footing (F2.0)

oting Flexure

Mu k-ft	Side			Gvrn. A in^2	s Actual A			Status
0.2949	+X	Bottom	0.1728	AsMin	0.40)	8.153	ок
0.2212	-X	Bottom	0.1728	AsMin	0.40)	8.153	OK
0.2212	+X	Bottom	0.1728	AsMin	0.40)	8.153	OK
Vu @ -X	Vu @	+X Vı	ມ @ −Z Vເ	ı @ +Z	Vu:Max I	Phi Vn	Vu / Phi*Vn	Status
6.65 p	si	6.65 psi	6.65 psi	6.65 psi	6.65 psi	75.00 ps	si 0.09	OK
29.51 p	si	29.51 psi	29.51 psi	29.51 psi	29.51 psi	75.00 ps	si 0.39	OK
13.14 p	si	13.14 psi	13.14 psi	13.14 psi	13.14 psi	75.00 ps	si 0.18	OK
5.70 p	si	5.70 psi	5.70 psi	5.70 psi	5.70 psi	75.00 ps	si 0.08	OK
4.28 p	si	4.28 psi	4.28 psi	4.28 psi	4.28 psi	75.00 ps	si 0.06	OK
							All units	k k
	Vu		Phi*Vn		Vu / Phi*Vn			Status
	26.4	12 psi	150.00	psi	0.1762			OK
	117.2	24 psi	150.00	Ipsi	0.7816			OK
	52.2	21 psi	150.00	psi	0.348			OK
	22.6	S5 psi	150.00	psi	0.151			OK
	16.9	99 psi	150.00	psi	0.1132			OK
	k-ft 0.2949 0.2212 0.2212 Vu @ -X 6.65 p 29.51 p 13.14 p 5.70 p	k-ft 0.2949 +X 0.2212 -X 0.2212 +X Vu @ -X Vu @ 6.65 psi 29.51 psi 13.14 psi 5.70 psi 4.28 psi Vu 26.4 117.2 52.2 22.6	k-ft Surface 0.2949 +X Bottom 0.2212 -X Bottom 0.2212 +X Bottom Vu @ -X Vu @ +X Vu 6.65 psi 29.51 psi 29.51 psi 13.14 psi 5.70 psi 4.28 psi 4.28 psi	k-ft Surface in^2 0.2949 +X Bottom 0.1728 0.2212 -X Bottom 0.1728 0.2212 +X Bottom 0.1728 Vu @ -X Vu @ +X Vu @ -Z Vu 6.65 psi 6.65 psi 6.65 psi 29.51 psi 29.51 psi 29.51 psi 13.14 psi 13.14 psi 13.14 psi 5.70 psi 5.70 psi 5.70 psi 4.28 psi 4.28 psi 4.28 psi Vu Phi*Vn 26.42 psi 150.00 117.24 psi 150.00 52.21 psi 150.00 22.65 psi 150.00 150.00	k-ft Surface in^2 in^2 0.2949 +X Bottom 0.1728 AsMin 0.2212 -X Bottom 0.1728 AsMin 0.2212 +X Bottom 0.1728 AsMin 0.2212 +X Bottom 0.1728 AsMin Vu @-X Vu @+X Vu @-Z Vu @+Z 6.65 psi 6.65 psi 6.65 psi 6.65 psi 29.51 psi 29.51 psi 29.51 psi 29.51 psi 13.14 psi 13.14 psi 13.14 psi 13.14 psi 5.70 psi 5.70 psi 5.70 psi 5.70 psi 4.28 psi 4.28 psi 4.28 psi 4.28 psi Vu Phi*Vn 26.42 psi 150.00 psi 117.24 psi 150.00 psi 52.21 psi 150.00 psi 22.65 psi 150.00 psi	k-ft Surface in^2 in^2 in^2 0.2949 +X Bottom 0.1728 AsMin 0.40 0.2212 -X Bottom 0.1728 AsMin 0.40 0.2212 +X Bottom 0.1728 AsMin 0.40 Vu @ -X Vu @ +X Vu @ -Z Vu @ +Z Vu:Max I 6.65 psi 6.65 psi 6.65 psi 6.65 psi 6.65 psi 29.51 psi 29.51 psi 29.51 psi 29.51 psi 29.51 psi 13.14 psi 13.14 psi 13.14 psi 13.14 psi 13.14 psi 13.14 psi 5.70 psi 5.70 psi 5.70 psi 5.70 psi 5.70 psi 4.28 psi 4.28 psi 4.28 psi 4.28 psi 4.28 psi 4.28 psi Vu Phi*Vn Vu / Phi*Vn Vu / Phi*Vn 26.42 psi 150.00 psi 0.7816 52.21 psi 150.00 psi 0.348 22.65 psi 150.00 psi 0.151	k-ft Surface in^2 in^2 in^2 0.2949 +X Bottom 0.1728 AsMin 0.40 0.2212 -X Bottom 0.1728 AsMin 0.40 0.2212 +X Bottom 0.1728 AsMin 0.40 Vu @ -X Vu @ +X Vu @ -Z Vu @ +Z Vu:Max Phi Vn 6.65 psi 6.65 psi 6.65 psi 6.65 psi 6.65 psi 75.00 psi 29.51 psi 29.51 psi 29.51 psi 29.51 psi 29.51 psi 29.51 psi 75.00 psi 13.14 psi 13.14 psi 13.14 psi 13.14 psi 13.14 psi 75.00 psi 5.70 psi 5.70 psi 5.70 psi 5.70 psi 5.70 psi 75.00 psi 4.28 psi 4.28 psi 4.28 psi 4.28 psi 75.00 psi 4.28 psi 4.28 psi 4.28 psi 0.1762 117.24 psi 150.00 psi 0.7816 52.21 psi 150.00 psi 0.151<	k-ft Surface in^2 in^2 in^2 k-ft 0.2949 +X Bottom 0.1728 AsMin 0.40 8.153 0.2212 -X Bottom 0.1728 AsMin 0.40 8.153 0.2212 +X Bottom 0.1728 AsMin 0.40 8.153 Vu @ -X Vu @ +X Vu @ -Z Vu @ +Z Vu:Max Phi Vn Vu / Phi*Vn 6.65 psi 6.65 psi 6.65 psi 6.65 psi 6.65 psi 75.00 psi 0.09 29.51 psi 29.51 psi 29.51 psi 29.51 psi 29.51 psi 75.00 psi 0.39 13.14 psi 13.14 psi 13.14 psi 13.14 psi 13.14 psi 75.00 psi 0.18 5.70 psi 5.70 psi 5.70 psi 5.70 psi 5.70 psi 75.00 psi 0.08 4.28 psi 4.28 psi 4.28 psi 4.28 psi 75.00 psi 0.06 Vu Phi*Vn Vu / Phi*Vn Vu / Phi*Vn <tr< td=""></tr<>

P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com

Project Title: Park's Residence Addition

Engineer: S. Cho Project ID: 2207

Remodel and addition of Single Family Residential Project Descr:

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

Restrained Retaining Wall

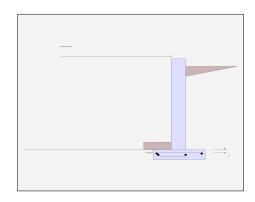
LIC#: KW-06013944, Build:20.23.08.01

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

DESCRIPTION: Restrained Stem Wall

Code Reference.


Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

П	п	е	

Retained Height Wall height above soil Total Wall Height	= = =	5.50 ft 0.50 ft 6.0 ft
Top Support Height	=	6.0 ft
Slope Behind Wall	=	0 6 in

Soil Data

Allow Soil Bearing	=	3,000.0 psf
Equivalent Fluid Pressure	Metho	od .
At-Rest Heel Pressure	=	32.0 psf/ft
	=	0.0 psf/ft
Passive Pressure	=	250.0 psf/ft
Soil Density	=	110 pcf
Footing Soil Friction	=	0.4 psf
Soil height to ignore		
for passive pressure	=	12 in

Surcharge Loads

Surcharge Over Heel	=	psf
>>>Used To Resist Sli	ding 8	Overturning
Surcharge Over Toe	=	40.0 psf
Used for Sliding & Ove	rturnir	ng .

Axial Load Applied to Stem

Axial Dead Load	=	531.25 lbs
Axial Live Load	=	737.75 lbs
Axial Load Eccentricity	=	in

Earth Pressure Seismic Load

Uniform Lateral Load Applied to Stem

Lateral Load	=	#/ft
Height to Top Height to Bottom	= =	ft ft
Load Type	=	Wind (W)
		(Service Level)
Wind on Exposed Stem	=	0.00 psf (Service Level)
Wind acts left-to-right to	waı	'

0.2 g

Adjacent Footing Load

_	.,		
	Adjacent Footing Load	=	lbs
	Footing Width Eccentricity	=	ft in
	Wall to Ftg CL Dist	=	ft
١	Footing Type		Line Load
)	Base Above/Below Soil at Back of Wall	=	ft
e.	Poisson's Ratio	=	0.3
Add	ed seismic per unit area	=	0.0 psf

Design Summary

Total Bearing Loadresultant ecc.	= =	2,835.90 -1.798		
Soil Pressure @ Toe Soil Pressure @ Heel	= =	704.96 1,421.70		
Allowable Soil Pressure Less ACI Factored @ Toe ACI Factored @ Heel	= Tha = =	n Allowable 919.31 1,853.98	psf	
Footing Shear @ Toe Footing Shear @ Heel Allowable	= =	9.014 12.621 75.0	psi	
Reaction at Top Reaction at Bottom	=	146.889 460.556	lbs lbs	
Sliding Calcs Lateral Sliding Force	=	460.556	lbs	

Concrete Stem Construction

K_h Soil Density Multiplier =

Thickness = Wall Weight = 100.0 psf Stem is FREE to rotate at top of footing

	@	Top Support	Mmax Between Top & Base	@ Base of Wall
		Stem OK	Stem OK	Stem OK
Design Height Above Ftg	=	6.0 ft	2.482 ft	0.00 ft
Rebar Size	=	# 4	# 4	# 4
Rebar Spacing	=	12.00 in	12.00 in	12.00 in
Rebar Placed at	=	Center	Center	Center
Rebar Depth 'd'	=	4.0 in	4.0 in	4.0 in
Design Data fb/FB + fa/Fa	=		0.176	
MomentActual	=	0.0 ft-#	597.91 ft-#	0.0 ft-#
MomentAllowable	=	3,387.60 ft-#	3,387.60 ft-#	3,387.60 ft-#
Shear Force @ this height	=	236.622 lbs		537.78 lbs
ShearActual ShearAllowable	=	4.930 psi 75.0 psi		11.204 psi 75.0 psi

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

Load Factors —	
Building Code	
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com

Project Title: Park's Residence Addition

Engineer: S. Cho Project ID: 2207

Remodel and addition of Single Family Residential Project Descr:

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

Restrained Retaining Wall

LIC#: KW-06013944, Build:20.23.08.01

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

Footing Strengths & Dimensions

Toe Width	=	1.0 ft
Heel Width	= -	1.667
Total Footing Width	=	2.667
Footing Thickness	=	8.0 in
Key Width	=	in
Key Depth	=	in
Key Distance from Toe	=	ft
f'c = 2,500.0 psi Footing Concrete Densit Min. As % Cover @ Top = 2 in	=	60000 psi 150 pcf 0.0018 Btm.= 3 in

DESCRIPTION: Restrained Stem Wall

Footing Design Results

		<u>Toe</u>	<u>Heel</u>
Factored Pressure	=	919.31	1,853.98 psf
Mu' : Upward	=	518.06	ft-#
Mu': Downward	=	125.0	ft-#
Mu: Design	=	393	-446 ft-#
Actual 1-Way Shear	=	9.014	psi
Allow 1-Way Shear	=	75.0	75.0 psi

Other Acceptable Sizes & Spacings:

Toe: # 4 @ 13.89 in -or- #4@ 13.88 in, #5@ 21.52 in, #6@ 30.55 in, #7@ 41 Heel:#4 @ 13.89 in -or- #4@ 13.88 in, #5@ 21.52 in, #6@ 30.55 in, #7@ 41 Key: # 0 @ 0.00 in -or- No key defined Min footing T&S reinf Area 0.46 in2 0.17 in2 /ft Min footing T&S reinf Area per foot If one layer of horizontal bars: If two layers of horizontal bars: #4@ 13.89 in #4@ 27.78 in #5@ 21.53 in #5@ 43.06 in #6@ 30.56 in #6@ 61.11 in

Summary of Forces on Footing: Slab RESISTS sliding, stem is PINNED at footing

Forces acting on footing soil pressure

Complement Over Head	0.011.11
Surcharge Over Heel = 0.0lbs 0.0 ft	0.0ft-#
Axial Dead Load on Stem = 1,269.0lbs 1.333 ft	1,692.0ft-#
Soil Over Toe = 55.0lbs 0.50 ft	27.50ft-#
Adjacent Footing Load = 0.0lbs 0.0 ft	0.0ft-#
Surcharge Over Toe = 40.0lbs 0.50 ft	20.0ft-#
Stem Weight = 600.0lbs 1.333 ft	800.0ft-#
Soil Over Heel = 605.20 lbs 2.167 ft	1,311.37ft-#
Footing Weight = 266.70 lbs 1.334 ft	355.644ft-#
Total Vertical Force = 2,835.90 lbs Moment =	4,206.52ft-#

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

P.O. Box 13423 TEL. 425.408.2748 Project Title: Engineer: Project ID: Park's Residence Addition S. Cho

2207

Project Descr: Remodel and addition of Single Family Residential

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House

Restrained Retaining Wall

LIC#: KW-06013944, Build:20.23.08.01

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

DESCRIPTION: Restrained Stem Wall

Rebar Lap & Embedment Lengths Information

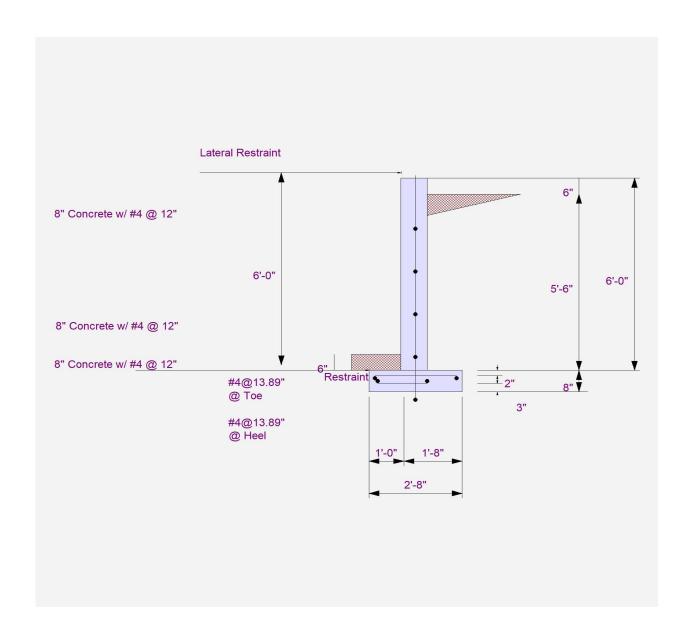
P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com Park's Residence Addition S. Cho

Project Title: Engineer: Project ID: 2207

Project Descr: Remodel and addition of Single Family Residential

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House


Restrained Retaining Wall

LIC#: KW-06013944, Build:20.23.08.01

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

DESCRIPTION: Restrained Stem Wall

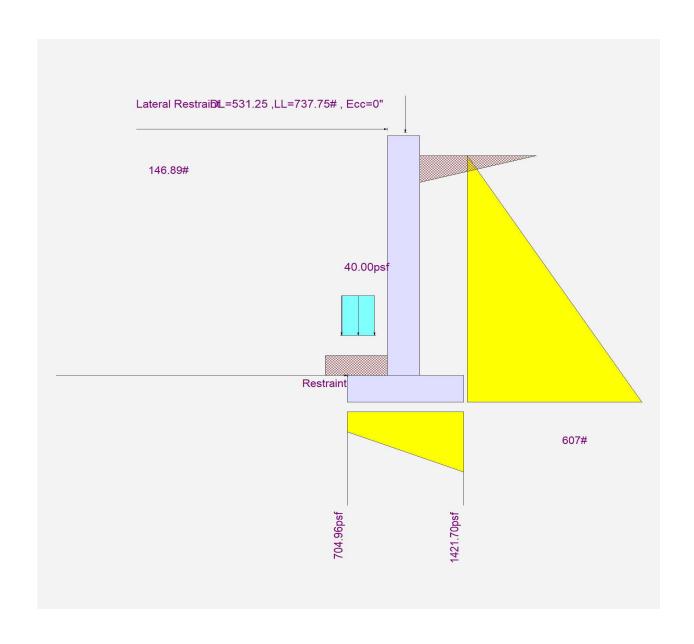
P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com Project Title: Engineer: Project ID: Park's Residence Addition S. Cho

2207

Project Descr: Remodel and addition of Single Family Residential

Project File: 2207 Mercer Island Park Residence Remodel.ec6

House


Restrained Retaining Wall

LIC#: KW-06013944, Build:20.23.08.01

CS2 ENGINEERS

(c) ENERCALC INC 1983-2023

DESCRIPTION: Restrained Stem Wall

 Project:
 8244 SE 30th St (#545230-0816)
 Date:
 March 28, 2022

 Location:
 Mercer Island, WA
 Prepared By:
 S. Cho

 CS2 No:
 2207
 Page

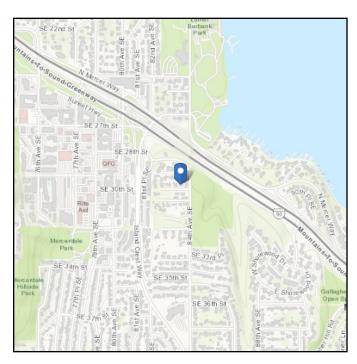
Lateral Load Design Calculation

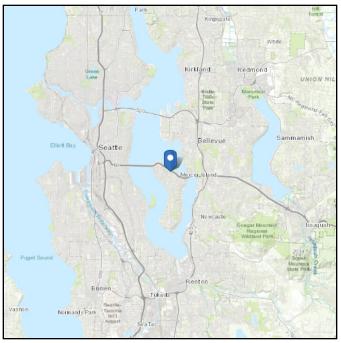
ASCE 7 Hazards Report

Address: 8244 SE 30th St

Standard: ASCE/SEI 7-16

Risk Category: ||


Mercer Island, Washington


98040

Soil Class: D - Default (see Section 11.4.3)

Elevation: 200.54 ft (NAVD 88)

Latitude: 47.58388 **Longitude:** -122.227601

Wind

Results:

Wind Speed 98 Vmph 10-year MRI 67 Vmph 25-year MRI 74 Vmph 50-year MRI 78 Vmph 100-year MRI 83 Vmph

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed: Sat Apr 09 2022

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Seismic

Site Soil Class: D - Default (see Section 11.4.3)

Results:

 $S_{\mbox{\scriptsize S}}$: S_{D1} : 1.395 N/A T_L : S₁ : 0.486 6 F_a : 1.2 PGA: 0.597 F_v : N/A PGA_M: 0.716 S_{MS} : F_{PGA} : 1.674 1.2 S_{M1} : N/A I_e : 1 C_v : S_{DS} : 1.116 1.379

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed: Sat Apr 09 2022

Date Source: USGS Seismic Design Maps

Snow

Results:		
Elevation: Data Source:		
Date Accessed:	Sat Apr 09 2022	

In "Case Study" areas, site-specific case studies are required to establish ground snow loads. Extreme local variations in ground snow loads in these areas preclude mapping at this scale.

Ground snow load determination for such sites shall be based on an extreme value statistical analysis of data available in the vicinity of the site using a value with a 2 percent annual probability of being exceeded (50-year mean recurrence interval).

Site is outside ASCE/SEI 7-16, Table 7.2-5 boundaries. For ground snow loads in this area, see SEAW Snow Load Analysis for Washington, 2nd Ed. (1995). <u>Structural Engineers Association of Washington</u>, Seattle, WA.

Statutory requirements of the Authority Having Jurisdiction are not included.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

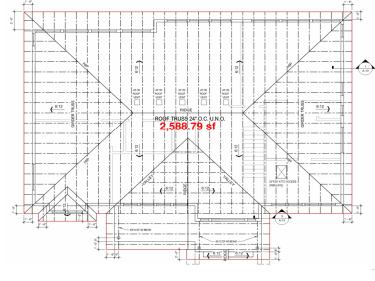
Project:	House Remodel (8244 SE 30th St, Mercer Island)					
Client:	Owner	Job No.:	2207			
Ву:	S. Cho	Date:	8/5/23			
Subject:	Design Calculations	Page:				

Design & Loading Criteria

Roof Dead Load:			
Roofing =	2.8	psf	
Insulation =	2.5	psf	
Roof sheathing =	1.7	psf	
Rafters @ 24" o.c. =	3.0	psf	
5/8" GWB =	2.8	psf	
M & E =	0.5	psf	
Miscellaneous =	1.0	psf	
Roof dead load total =	14.3	psf	
USE =	15.0	psf	
Roof Live Load:	25	psf	
Total Roof Load =	40.0	psf	

Floor Dead Load:			
Floor Cover =	1.0	psf	
Insulation =	1.0	psf	
Floor sheathing =	2.7	psf	
Joists @ 16" o.c. =	2.8	psf	
5/8" GWB =	2.8	psf	
M & E =	1.0	psf	
Miscellaneous =	0.5	psf	
Floor dead load total =	11.8	psf	
USE =	12.0	psf	
Floor Live Load:	40	psf	
Total Floor Load =	52.0	psf	

Wall Dead Load: 2x Stud @ 16" o.c. = 2.0 psf 7/16" Sheathing = 1.8

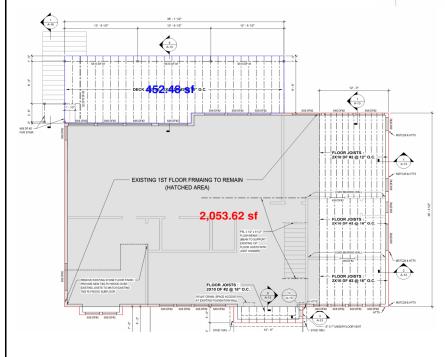

Gypsum sheathing = 2.0 psf psf Insulation = 1.0 psf Siding = 2.0 psf Miscellaneous = 0.5 psf Wall dead load total = 9.3 psf USE = 10.0 psf

DESIGN REFERENCES:

- ·ASCE 7-16, MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURE.
- ·IBC 2018, INTERNATIONAL BUILDING CODE 2018.
- ·ACI 318-14, BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE AND COMMENTARY.
- \cdot NDS 2018, NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION WITH COMMENTARY.
- ·AWC SDPWS-2015, SPECIAL DESIGN PROVISIONS FOR WIND AND SEISMIC WITH COMMENTARY.
- ·AISC 360-16, SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS: STEEL DESIGN MANUAL

Project:	House Remodel (8244 SE 30th St, Mercer Island)					
Client:	Owner	Job No.:	2207			
Ву:	S. Cho	Date:	8/5/23			
Subject:	Design Calculations	Page:				

Roof DL (psf) =	15
Roof Weight (lbs) =	38835


 Wall DL (psf) =
 10

 Total Wall Length (ft) =
 185

 Wall Height (ft) =
 9

 1/2 Upper Wall (lbs) =
 8325

Wall DL (psf) =	10
Total Wall Length (ft) =	185
Wall Height (ft) =	9
1/2 Upper Wall (lbs) =	8325
2nd Floor Area (ft ²) =	2054
Floor DL (psf) =	12
Floor Weight (lbs) =	24648
Wall DL (psf) =	10
Total Wall Length (ft) =	185
Wall Height (ft) =	10
1/2 Lower Wall (lbs) =	9250

Project:	House Remodel (8244 SE 30th St, Mercer Island)						
Client:	Owner	Job No.:	2207				
Ву:	S. Cho	Date:	8/5/23				
Subject:	Design Calculations	Page:					

culate Seismic Design Base Shear				Per USGS	
Structure Height, h _h , (ft)	=	16.8	(Mean roof height)	$S_s =$	1.395
$S_{DS} = 2/3 S_{MS}$	=	1.116	(per USGS)	S ₁ =	0.486
$S_{D1} = 2/3 S_{M1}$	=	N/A	(per USGS)	S _{MS} =	1.674
Risk Category= Standard-Occupancy Buildings	=	II		$S_{M1} =$	N/A
Seismic Design Category per S _{DS}	=	D			
Occupancy Importance Factor, I _E	=	1	(ASCE 7, Table 11.5.1)		
Response Modification Factor, R	=	6.5	(ASCE 7, Table 12.2-1)		
Building Period Coefficient, C _t	=	0.02	(ASCE 7, Table 12.8-2)		
$T = C_t \times (h_n)^{3/4}$	=	0.166	(ASCE 7, Eq 12.8-7)		
T _L = long-period transaction	=	6	(ASCE 7, Fig 22-15)		
$C_s = S_{DS}/(R/I_E)$	=	0.172	(ASCE 7, Eq 12.8-2)		
But need not exceed:					
$C_S = S_{D1}/[T(R/I_E)]$	=	N/A	(ASCE 7, Eq 12.8-3)		
But not less than:					
$C_S = 0.44S_{DS}I_E$; (not less than 0.01)	=	0.049	(ASCE 7, Eq 12.8-5)		
$C_S = 0.5S_1/(R/I_E)$ (if $S_1 > or = 0.6g$)	=	N/A	(ASCE 7, Eq 12.8-6)		
Seismic Base Shear, V _S = C _S W, (kips)	=	0.172	x Weight	F _{px, min} =	=
Seismic Base Shear, $V_s/1.4 = C_sW$, (kips)	=	0.123	x Weight (ASD)	F _{px, max} =	=

Calculate Seismic Force for Components (Per ASCE7-16 Chapter 13)

Component amplification factor, $\mathbf{a_p}$ = 1 (ASCE 7, Table 13.5.1 & 13.6.1)

Component Importance factor, I_p = 1 (ASCE 7, Section 13.3)

Component operating weight, W_p = W_p (Ib)

Component response modification factor, R_p = 2.5 (ASCE 7, Table 13.5.1 & 13.6.1)

Height of attachment / Mean roof height, **z/h** = **1** (z/h need not exceed 1.0)

Seismic Design Force, $F_p = (0.4a_pS_{DS}W_p) (1+2xz/h)$

 R_p/I_p = 0.536 W_p (Eq. 13.3-1)

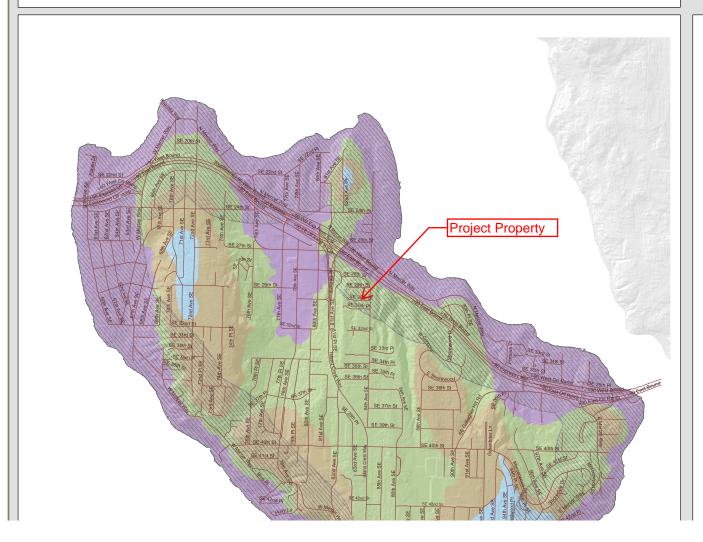
Max. seismic design force, $\mathbf{F}_{pmax} = \mathbf{1.6S}_{DS}\mathbf{I}_{p}\mathbf{W}_{p} = \mathbf{1.786} \mathbf{W}_{p}$ (Eq. 13.3-2)

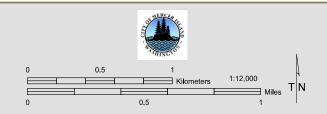
Min. seismic design force, $F_{pmin} = 0.3S_{DS}I_pW_p = 0.335 W_p$ (Eq. 13.3-3)

Seismic Design Force, Fp = 0.536 W_p

Seismic Design Force, Fp/1.4 = 0.383 W_p

inal on	Level	Height h _x (ft)	Weight w _x (lbs)	w _x h _x (lb-ft)	%	F _{x Long} (lbs)	F _x Coef.	Story Shear (V _x)
tudii ctio	R	16.8	47160	792288	70%	7685	0.163	7685
.g. 5	2	8	42223	337784	30%	3277	0.078	10962
e i	1			0	0%	0	0.000	10962
_	Σ		89383	1130072	100%	10962		

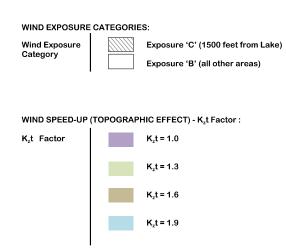

F_{px, min} = 7519


 $F_{px, max} = 15037$

	Level	Height	Weight	$w_x h_x$	%	F _{x Tras}	F _x Coef.	Story
rse on		h _x (ft)	w _x (lbs)	(lb-ft)		(lbs)		Shear (V _x)
sver	R	16.8	47160	792288	70%	7685	0.163	7685
rans Dire	2	8	42223	337784	30%	3277	0.078	10962
Tra D	1			0	0%	0	0.000	10962
	Σ		89383	1130072	100%	10962		

Mercer Island Wind Exposure and Wind Speed-Up (Topographic Effect)

by Development Services Group (DSG), City of Mercer Island April 2009



WIND EXPOSURE CATEGORIES & WIND SPEED-UP FACTORS (ICC Section 1609 & ASCE 7-05 Chapter 6)

It is the responsibility of the Owner (or their Design Professional) to review site conditions and determine the Kzt factor to be utilized for each specific project. The Kzt factors and wind exposure categories indicated on this map are the minimum values accepted by the City of Mercer Island without requiring the design professional to submit additional calculations and supporting topographic documentation (to verify the values utilized in their wind load determination).

Please note – The Kzt values indicated on this map are approximations based upon periodic calculations of representative samplings around Mercer Island. These values are intended for City of Mercer Island's plan review purposes only.

Project:	House Remodel (8244 SE 30th St, Mercer Island)					
Client:	Owner	Job No.:	2207			
Ву:	S. Cho	Date:	8/5/23			
Subject:	Design Calculations	Page:				

Wind Load Calculation (Method 2 - Analytical)

(Reference: IBC 2018, Section 1609 & ASCE 7-16, Chapter 27)

0.18

Wind Velocity Pressure:

Basic Wind Speed, V_{3s} , (mph)
Exposure Category
Building Category
Wind Load Importance Factor, I_w Velocity pressure exposure coefficient, K_z Topographic Factor, K_{zt} Wind Directionality Factor, K_d Velocity Pressure, q_{z_t} (lb/ft²)

Gust effect factor, G

98 (ASCE 7-16, Figure 6-1)
C (ASCE 7-16, Section 6.5.6)
II (IBC Table 1604.5)
1.3 (IBC Table 1604.5)

See Table (ASCE 7-16, Table 6-3)
 1.00 (ASCE 7-16, Figure 6-4)

0.85 (ASCE 7-16, Table 6-4). **0.00256K**_zK_{zt}K_dV²I_w (ASCE 7-16, Eq. 6-15)

27.17 Kz (ASCE 7-16, Section 6.5.10) **0.85** (ASCE 7-16, Section 6.5.8)

WIND

q_z GC_p

q_h GC_p

q_h GC_p

q_h GC_p

PLAN

ELEVATION

Internal Pressure Coefficent, Cpi

Width, B = 36.5 ft Length, L = 56 ft Height to eave, he = 12.5 ft Height to ridge, $h_r =$ 21 ft Mean roof height = 16.8 ft $\theta =$ 22.6 deg $\mathbf{q_h}$, (lb/ft²) = 24.76

L/B = 1.5h/L = 0.3

 $p = qGC_p - q_i(GC_{pi})$ = 3.79 (ASCE 7-16, Eq 6-17)

MWFRS Pressure:

	Height	Kz	q _z or q _h	Ср
	Z, (ft)			
Winward Wall	0-15	0.85	23.06	8.0
	21	0.91	24.76	0.8
	25	0.95	25.68	0.8
	27.5	0.96	26.20	0.8
Side Wall	All		24.76	-0.7
Windward Roof	ı		24.76	-0.8
			24.76	-0.18
Leeward Roof	ı		24.76	-0.5
Horizontal Distance from windward edge				

nonzoniai Distance Irom windward edge				
0 to h		24.76	-0.9	
h to 2h		24.76	-0.5	
> 2h		24.76	-0.3	
(Where h =	21	ft)		

Vertical Wall =31.56 psfVertical Roof =6.22 psfHorizontal Roof =2.59 psf

Net Pressure (**p**), psf qGC_p Total (+GCpi) (-GCpi) Wind Load 15.68 11.89 19.47 30.41 16.83 13.05 20.62 31.56 17.46 13.68 21.25 32.19 17.82 14.03 21.60 32.55 -14.73 -18.52 -10.94 -20.62 -16.83 -13.05 -6.31 -3.79-7.58 0.00 6.73 -14.31 -10.52 -6.73

	-18,94	/ -22.73	-15.15
	10.52	/ _14.31	-6.73
/	-6.31	-10.10	-2.53
/			
_	´ •		

-22.73

OR Not less than (16psf)xA_f for Wall

Project:	roject: House Remodel (8244 SE 30th St, Mercer Island)		
Client:	Owner Job No.: 2207		2207
Ву:	S. Cho	Date:	8/5/23
Subject:	Design Calculations	Page:	

Calculate Wind Force (addition only)

Wind load =	31.56	psf	
Tributary height @ roof (ft) =	9	ft	
Tributary height @ 2nd Floor (ft) =	8	ft	
Width (B) =	36.5	ft	
Length (L) =	56	ft	
Wind force $(W_{roof}) =$	284.0	plf	Seismic Force
Wind force at longitudinal direction = (W _{ROOF} x B) =	10367	lbs	7685 (Longitudinal)
Wind force at transverse direction = $(W_{ROOF} \times L)$ =	15906	lbs	3277 (Transverse)
Wind force (W _{2nd Fl.}) =	252.5	plf	Seismic Force
Wind force at longitudinal direction = $(W_{2ND FL} \times B)$ =	9216	lbs	7685 (Longitudinal)
Wind force at transverse direction = $(W_{2ND FL} \times L)$ =	14139	lbs	3277 (Transverse)

CS2 ENG!	NEERS
Civil & Structural C	hallenge & Success
Green Design For Our	Environment

Project:	Ву:	Page:
Location:	Date:	
Client:	Check:	Job No:
Subject:	Date:	

Allowable Shear Wall Capacity (per SDPWS 2015 Table 4.3A)

- % Assume Hem. Fir Stud Wall (G = 0.43)
- % Assume 3/32" Wood Structural Panel Structural I with 10D common nails
- % Assume 12" o.c. on field fastener spacing
- %Nominal unit shear capacities shall based on 15/32 of 10d per Table 4.3A & footnote-2 in 2015 SDPWS.

A) Seismic Force Panel Edge Fastener

at 6" o.c. = $(680^{\#}/2)$ [1-(0.5-0.43)] = 316 plf

(SW-1)

at 4" o.c. = $(1020^{\#}/2)[1-(0.5-0.43)] = 474$ plf

(SW-2)

at 3" o.c. = (1330*/2) [0.93] = 618 plf

(SW-3)

at 2" o.c. = $(1740^{\#}/2)$ [0.93] = 809 plf

(SW-4)

B) Wind Force Panel Edge Fastener

at 6" o.c. = $(950^{\#}/2)$ [1-(0.5-0.43)] = 442 plf

(SW-1)

at 4" o.c. = $(1430^{\#}/2)$ [1-(0.5-0.43)] = 665 plf

(SW-2)

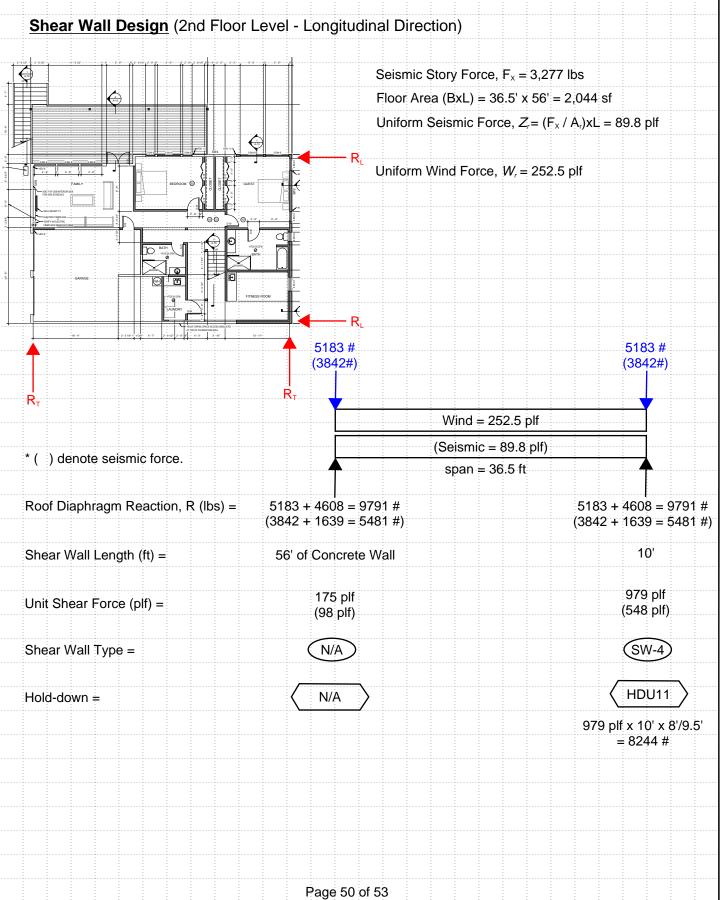
at 3" o.c. = $(1860^{\#}/2)[0.93] = 865$ plf

(SW-3)

at 2" o.c. = $(2435^{\#}/2)$ [0.93] = 1132 plf

(SW-4)

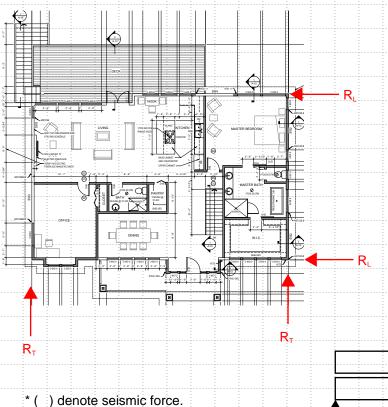
Assumed the existing shear wall type is SW-1


CS2 EN	SINEERS
Civil & Structural	Challenge & Success
Green Design Fo	r Our Environment

Project:	Ву:	Page:
Location:	Date:	
Client:	Check:	Job No:
Subject:	Date:	

Shear Wall Design (Roof Level - Longitudinal Direction) Seismic Story Force, $F_x = 7,685$ lbs Floor Area (BxL) = 36.5'x56' = 2,044 sf Uniform Seismic Force, $Z_r = (F_x / A_r)xL = 210.5 plf$ Uniform Wind Force, $W_r = 284 \text{ plf}$ R_{T} R_{T} Wind = 284 plf(Seismic = 210.5 plf)* () denote seismic force. span = 36.5 ftR_L 5183# 5183# Roof Diaphragm Reaction, R (lbs) = (3842#)(3842#)Shear Wall Length (ft) = 9' 4.75' 1091 plf 576 plf Unit Shear Force (plf) = (808 plf) (427 plf) (SW-4) (SW-2) Shear Wall Type = Hold-down = HDU14 MST60 1091 plf x 4.75' x 9'/4.25' 576 plf x 9' x 9'/8.5' = 10974 # = 5489

Page 49 of 53


	Project:	By:	Page:
CS2 ENGINEERS	Location:	Date:	1
Civil & Structural Challenge & Success	il & Structural Challenge & Success Client: Check:	Job No	
Green Design For Our Environment	Subject:	Date:	
Shear Wall Design (2nd Flo	or Level - Longitudinal Direction)		
	Seismic Story Force, F _x :	= 3,277 lbs	
	Floor Area (BxL) = 36.5'	x 56' = 2,044 sf	

CS2 EN	SINEERS
Civil & Structural	Challenge & Success
Green Design Fo	r Our Environment

Project:	By:	Page:
Location:	Date:	
Client:	Check:	Job No:
Subject:	Date:	

Shear Wall Design (Roof Level - Transverse Direction)

Seismic Story Force, $F_x = 7,685$ lbs Floor Area (BxL) = 36.5'x56' = 2,044 sf Uniform Seismic Force, $Z_r = (F_x / A_r)xB = 137.2 plf$

Uniform Wind Force, $W_c = 284 \text{ plf}$

Wind = 284 plf

Roof Diaphragm Reaction, R (lbs) =

Shear Wall Length (ft) =

Unit Shear Force (plf) =

Shear Wall Type =

Hold-down =

(Seismic = 137.2 plf)span = 56 ft

7952 # (3842#)

23'

346 plf (167 plf)

(SW-2)

MST 48

419 plf (202 plf)

MST 48

(SW-2)

7952 # (3842#)

10.5' + 8.5'= 19'

346 plf x 23' x 9'/22.5' = 3183 #

419 plf x 8.5' x 9'/8' = 4007 #

Page 51 of 53

Shear Wall Length (ft) =	(3842 + 1641 = 5483 #) 15'	(384	12 + 1641 = 5483 #) +7.5'+8.5' = 23'
Roof Diaphragm Reaction, R (lbs) =		ın = 56 ft 795	2 + 7070 = 15022 #
* () denote seismic force.	1	nic = 58.6 plf)	
	Winc	d = 252.5 plf	
R_{τ}	Ŕ _T		
	(3842#)		(3842#)
91-4 2-539 4-10 6-72 2-349 2-8 4 6-72 2-349	7952 #		7952 #
UNADOR DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DE	FINESS ROOM RL		
GARAGE SO E			
The state of the s	TOTAL PARTY		
AGIN OF DESCRIPTION OF THE PROPERTY OF THE PRO	Uniform Win	d Force, <i>W</i> , = 252.5 pl	f
	R Uniform Seis	smic Force, $Z = (F_x / A)$	_r)xB = 58.6 plf
h	(A)	$BxL) = 36.5' \times 56' = 2,0$	
		ry Force, $F_x = 3,277$ lb	
Shear Wall Design (2nd Floo	or Level - Transverse Direction)		
	Subject:	Date:	
Civil & Structural Challenge & Success Green Design For Our Environment	Client:	Check:	Job No:
CS2 Engineers	Location:	Date:	
	Project:	By:	Page:

Shear Wall Length (ft) =

Unit Shear Force (plf) =

Shear Wall Type =

1001 plf (366 plf) (SW-4)

(238 plf)

1001 plf x 15' x 8'/14.5' = 8288 #

Page 52 of 53

653 plf x 8' x 8'/7.5' = 5572 #

HDU8

Project:8244 SE 30th St (#545230-0816)Date:March 28, 2022Location:Mercer Island, WAPrepared By:S. ChoCS2 No:2207Page

Appendix

LTT/HTT

SIMPSON Strong-Tie

Tension Ties

Tension ties offer a solution for resisting tension loads that are fastened with nails or Strong-Drive® SD Connector screws. The new LTTP2 light tension tie, designed for wood joist attachments to concrete or masonry walls, features two separate nailing patterns: obround holes spaced 3" apart for I-joist purlins and square holes spaced to accommodate the narrow face of 2x solid-sawn purlins. LTTP2 may also be installed vertically on the wide face of a minimum 2x4 stud for holdown application. It features an extruded anchor bolt hole to accommodate ¾", 5%" and ½" bolt diameters.

The LTTI31 is designed for wood chord open-web truss attachments to concrete or masonry walls and may also be installed vertically on a minimum 2x6 stud.

The HTT4 and HTT5 tension ties feature an optimized nailing pattern which results in better performance with less deflection. HTT5KT is sold as a kit with the holdown, bearing plate washer and Strong-Drive SD Connector screws.

The HTT5-¾ is designed to use a ¾"-diameter anchor bolt.

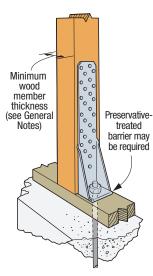
When using LTT or HTT tension ties with unreinforced concrete masonry, % " post-installed anchor bolts are commonly used.

Material: See table

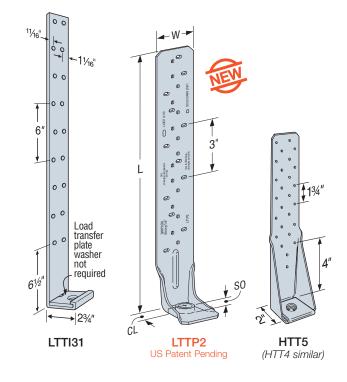
Finish: Galvanized. May be ordered HDG; contact Simpson Strong-Tie.

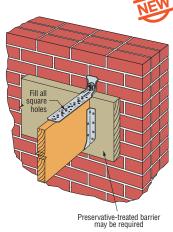
Installation:

- See Holdown and Tension Tie General Notes on pp. 49-50.
- LTTP2 one standard cut-washer is required when using ½" and 5%" anchor bolts; and no additional washer is required for ¾" anchor bolts.

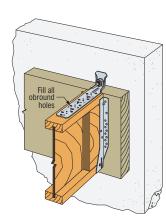

 LTTP2 — For installations on narrow edge of solid sawn (2x, 3x) joists use (15) square holes; for all other installations use (12) obround holes.

 For tension ties installed over wood structural panel sheathing, use a 2½"-long fastener minimum.

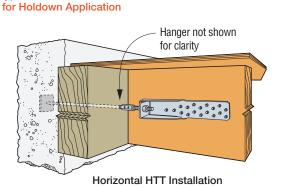

 For information about marriage strap at panelized roof applications, see strongtie.com.

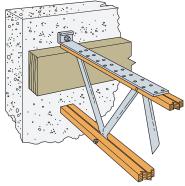

 HTT5-KT requires BP 5/8-2 bearing plate and #10 x 2½" SD Strong-Drive screws (included in kit).

Codes: See p. 11 for Code Reference Key Chart



Vertical HTT5 Installation (HTT4 similar)





Typical LTTP2 Installation for I-joist

Fill all obround holes

Typical LTTP2 Installation

Horizontal LTTI31 Installation

C-C-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

SIMPSON Strong-Tie

Tension Ties (cont.)

These products are available with additional corrosion protection. For more information, see p. 14.

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348–352 for more information.

	Model	Ga.	Di	imensio (in.)	ns	S0	Fa	asteners (in.)	Minimum Wood Member Size		ension Loads 50)	Deflection at Highest	Code
	No.	ua.	W	L	CL	(in.)	Anchor Rod Diameter	Wood Fasteners	(in.)	DF/SP	SPF/HF	Allowable Load (in.)	Ref.
							1/2, 5/8, 3/4	(15) 0.148 x 2½	1½ x 3½ (narrow edge)4,5	1,845	1,695	0.104	
							1/2	(12) 0.148 x 1½	1½ x 3½	1,680 ⁶	1,545 ⁶	0.138	
	1.7700	10	2%16	1415/16	11/8	7/16	5/8, 3/4	(12) U.148 X 1 ½	1 /2 x 3 /2	2,135	1,965	0.112	
	LTTP2	10	∠%16	14 19/16	1 1/8		1/2	- (12) #9 x 1½" SD	1½ x 3½	2,320	1,970	0.112	IBC, FL, LA
							5/8, 3/4		1 /2 / 0 /2	2,570	2,045	0.136	1 2, 27
							1/2, 5/8, 3/4	(12) 0.148 x 2½	3 x 3½	2,275	2,230	0.128	
	LTTI31	18	3¾	31	1%	1/4	5/8	(18) 0.148 x 1½	3 x 3½	1,350	1,160	0.193	
								(18) 0.148 x 1½	1½ x 3½	3,000	2,580	0.090	_
	HTT4					7/16	5/8	(18) 0.148 x 1½	3 x 3½	3,610	3,105	0.086	IBC,
		11	21/2	12%	1 5/16			(18) 0.162 x 2½	3 x 3½	4,235	3,640	0.123	FL, LA
								(18) #10 x 1½" SD	1½ x 5½	4,455	3,830	0.112	
								(18) #10 x 1½" SD	3 x 31⁄2	4,455	3,830	0.112	_
								(26) 0.148 x 1½	3 x 3½	4,350	3,740	0.120	
	HTT5	11	2½	16	17/16	7/16	5/8	(26) 0.148 x 3	3 x 31⁄2	4,670	4,015	0.116	IBC, FL, LA
	ппэ	' '	Z 7/2	10	I 7/16		78	(26) 0.162 x 2½	3 x 31⁄2	5,090	4,375	0.135	
								(26) #10 x 11/2" SD	1½ x 5½	4,555	3,915	0.114	
	HTT5KT	11	21/2	16	1 7⁄16	7⁄16	5/8	(26) #10 x 21/2" SD	3 x 3½	5,445	5,360	0.103	
								(26) 0.148 x 1½	1½ x 5½	4,065	3,495	0.103	
	HTT5-3/4	11	21/2	16	1 7⁄16	7⁄16	3/4	(26) 0.162 x 2½	3 x 3½	5,090	4,375	0.121	IBC, FL
								(26) #10 x 1 ½" SD	1½ x 7¼	4,830	4,155	0.100	

- 1. LTTI31 installed flush with concrete or masonry has an allowable load of 2,285 lb.
- 2. Allowable load for HTT5 with a BP5/8-2 bearing-plate washer installed in the seat of the holdown is 5,295 lb. for DF/SP and 4,555 lb. for SPF/HF.
- 3. For LTTP2, standard cut washer is required when using ½" and %" anchor rods
- 4. For (15) nail installations on narrow edge of 2x4 (minimum) joist, LTTP2 installed flush with concrete or masonry has an allowable load of 2,560 lb. for DF/SP and 2,355 lb. for SPF/HF.
- 5. LTTP2 installed with (15) #9 x 11/2" SD screws on narrow edge of 2x joist has an allowable load of 2,105 lb. for DF/SP and 1,935 lb. for SPF/HF.
- 6. For (12) nail installations on I-joist or wide face of 2x member, LTTP2 installed flush with concrete or masonry has an allowable load of 1,950 lb. for DF/SP and 1,795 lb. for SPF/HF.
- 7. Fasteners: Nail dimensions are listed diameter by length. SD screws are Simpson Strong-Tie® Strong-Drive SD Connector screws. See pp. 21–22 for fastener information.

Holdown		Stemwall Slab on Grade											
on Sten			d and Seism Category		Seismic I Categor		Wind and Seis Categor		Seismic Catego				
Lumber	(in.)	Midwall	/Corner	End Wall	Midwall/Corner	End Wall	Midwall/Corner	Garage Curb	Midwall/Corner	Garage Curb			
HDU2	6		SSTB10	3	SSTB	24	SSTE	16	SSTB16	SSTB20* (2,960)			
HDU4	6		SB5/8X2	24	SB5/8	(24	SSTB16	SB5/8X24	SSTB20	SB5/8X24			
HDU5	6		SB5/8X2	24	SB5/8	(24	SSTB20	SB5/8X24	SSTB24	SB5/8X24			
Table 2 — Anchorage Selection Guide for Holdowns Attached to SPF/HF Lumber											r		
HDU11 HHDQ11		Holdown			Stemwall	_				on Grade			
HDU14		on SPF/HF	Stemwall Width		Seismic Design gory A&B		Seismic Design Category C–F		Seismic Design gory A&B	Seismic Design Category C-F			
HHDQ14		Lumber	(in.)	Midwall/Corne	r End Wall	Midwall/Corne	r End Wall	Midwall/Corne	er Garage Curb	Midwall/Corner	Garage Cur		
LTTP2		HDU2	6	SS	STB16	SS	STB16	S	SSTB16 S				
LTTI31		HDU4	6	SS	STB16	SS	SSTB24		SSTB16		SSTB24		
HTT4		HDU5	6	SSTB2	4* (4,295)	SB	5/8X24	SSTB16	SSTB24* (4,295	SSTB20	SB5/8X24		
HTT5		HDU8	8	SS	STB28	SSTB28	SSTB28* (6,395	SSTB28		SSTB28	SSTB28		
HD3B		HDQ8	8	SS	STB28	SSTB28	SSTB28* (6,395) S	STB28	SSTB28	SSTB28		
HD5B		HDU11	8	SB1X30* (9,505) PAB8	PAB8	PAB8		6B1x30	CD:	004-00		
HD7B		HHDQ11	8	SB1X30	PAB8	F	AB8	1	DEIXOU	JD.	SB1x30		
HD9B		HDU14	_		PAB8		AB8		B1x30	CB+	x30		
HD12		HHDQ14	_		ADO		ADO		JU IAOU	30	IAGU		
ee foonotes	bt LTTP2 6		STB16		STB16		STB16	000	B16				
		LTTI31	6	53	סוסוס	58	סוסוט	s	OIDIO	551	DIO		
		HTT4	6	SS	STB20	SB	5/8X24	SSTB16	SSTB20	SSTB16* (3,780)	SB5/8X24		
		HTT5	6	SB	5/8X24	SB	5/8X24	SSTB20	SB5/8X24	SSTB24	SB5/8X24		
		HD3B	6		STR16		CTR24		STR16	SSTR16	SSTR20* /2 0/		

We've made selecting the right anchor bolt for the holdown easier. Check out our Holdown Anchorage Solutions table on p. 44 or the Post-to-Foundation Designer at app.strongtie.com/pfd.

Holdowns

This product is preferable to similar connectors because of (a) easier installation, (b) higher loads, (c) lower installed cost, or a combination of these features.

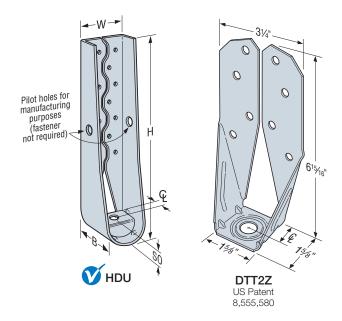
HDU holdowns are pre-deflected during the manufacturing process, virtually eliminating deflection under load due to material stretch. They use Strong-Drive® SDS Heavy-Duty Connector screws which install easily, reduce fastener slip and provide a greater net section when compared to bolts.

The DTT tension ties are designed for lighter-duty holdown applications on single 2x posts. The DTT1Z is installed with nails or Strong-Drive SD Connector screws and the DTT2 installs easily with the Strong-Drive SDS Heavy-Duty Connector screws (included). The DTT1Z holdowns have been tested for use in designed shearwalls and prescriptive braced wall panels as well as prescriptive wood-deck applications (see p. 295 for deck applications).

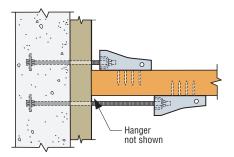
For more information on holdown options, contact Simpson Strong-Tie.

HDU Features:

- Uses Strong-Drive SDS Heavy-Duty Connector screws which install easily, reduce fastener slip and provide a greater net section area of the post compared to bolts
- Strong-Drive SDS Heavy-Duty Connector screws are supplied with the holdowns to ensure proper fasteners are used
- · No stud bolts to countersink at openings


Material: See table


Finish: HDU — galvanized; DTT1Z and DTT2Z — ZMAX® coating; DTT2SS — stainless steel


Installation:

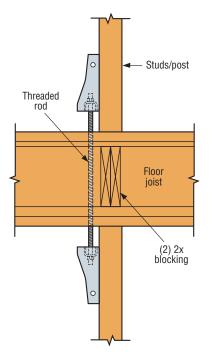
- See Holdown and Tension Tie General Notes on pp. 49–50.
- The HDU requires no additional washer; the DTT requires a standard-cut washer (included) be installed between the nut and the seat.
- Strong-Drive SDS Heavy-Duty Connector screws install best with a low-speed high-torque drill with a %" hex-head driver.
- Fasteners and crescent washer are included with the holdowns. For replacements, order part no. SDS25212-HDU_.
 (Fill in the size needed, e.g., HDU2.)

Codes: See p. 11 for Code Reference Key Chart

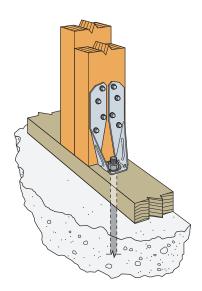
Horizontal HDU Offset Installation (plan view) See Holdown and Tension Tie General Notes.

C-C-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

SIMPSON Strong-Tie


Holdowns (cont.)

- These products are available with additional corrosion protection. For more information, see p. 14.
- For stainless-steel fasteners, see p. 21.
- Many of these products are approved for installation with Strong-Drive® SD Connector screws.


 See pp. 348–352 for more information.

	Model			Di	mensio (in.)	ns			Fasteners (in.)	Minimum Wood	All	owable Tensior (160)	1 Loads	Code					
	No.	Ga.	W	Н	В	CL	S0	Anchor Bolt Dia. (in.)	Wood Fasteners	Member Size (in.)	DF/SP	SPF/HF	Deflection at Allowable Load (in.)	Ref.					
									(6) #9 x 11/2" SD		840	840	0.17						
	DTT1Z	14	1½	71/8	1 7/16	3/4	3/16	3/8	(6) 0.148 x 1½	1½ x 5½	910	640	0.167						
									(8) 0.148 x 1½		910	850	0.167						
SS	DTT2Z								(8) 1/4 x 1 1/2 SDS	1½ x 3½	1,825	1,800	0.105						
00/	DITZL	14	31/4	615/16	1%	¹³ ⁄16	3/16	1/2	1/2	1/2	1/2	1/2	1/2	(8) 1/4 x 1 1/2 SDS	3 x 3½	2,145	1,835	0.128	
SS	DTT2Z-SDS2.5								(8) 1/4 x 21/2 SDS	3 x 3½	2,145	2,105	0.128						
	HDU2-SDS2.5	14	3	811/16	31/4	1 5/16	1%	5/8	(6) 1/4 x 21/2 SDS	3 x 3½	3,075	2,215	0.088	IBC,					
	HDU4-SDS2.5	14	3	1015/16	31/4	1 5/16	1%	5/8	(10) 1/4 x 21/2 SDS	3 x 3½	4,565	3,285	0.114	FL, LA					
	HDU5-SDS2.5	14	3	13¾6	31/4	1 5/16	1%	5/8	(14) 1/4 x 21/2 SDS	3 x 3½	5,645	4,340	0.115						
										3 x 3½	6,765	5,820	0.11						
	HDU8-SDS2.5	10	3	16%	3½	1%	1 1/2	7/8	(20) 1/4 x 21/2 SDS	3½ x 3½	6,970	5,995	0.116						
											3½ x 4½	7,870	6,580	0.113					
	HDU11-SDS2.5	10	3	221/4	31/2	1%	11/2	1	(30) 1/4 x 21/2 SDS	3½ x 5½	9,535	8,030	0.137						
	UDU 11-9D95'3	10	3	2274	3 72	1 78	1 72	ı	(30) 74 X Z 72 3D3	3½ x 7¼	11,175	9,610	0.137						
Ì										3½ x 5½	10,770	9,260	0.122	_					
	HDU14-SDS2.5	7	3	2511/16	3½	1 %16	1 %16	1	(36) 1/4 x 21/2 SDS	3½ x 7¼	14,390	12,375	0.177	IBC,					
										5½ x 5½	14,445	12,425	0.172	FL, LA					

- 1. HDU14 requires heavy-hex anchor nut to achieve tabulated loads (supplied with holdown).
- 2. HDU14 loads on 4x6 post are applicable to installation on either the narrow or the wide face of the post.
- 3. Fasteners: Nail dimensions are listed diameter by length. SD and SDS screws are Simpson Strong-Tie® Strong-Drive SD Connector and SDS Heavy-Duty Connector screws. See pp. 21–22 for fastener information.

Typical HDU Tie Between Floors

Typical DTT2Z Installation

MSTC48B3/MSTC66B3Z

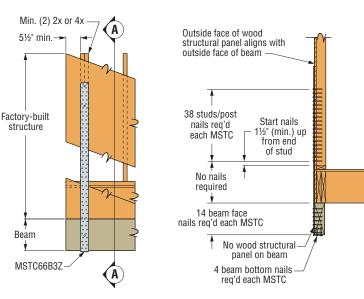
Pre-Bent Straps

The MSTC48B3 and MSTC66B3Z are pre-bent straps designed to transfer tension load from an upper-story shearwall to a beam on the story below.

Material: 14 gauge

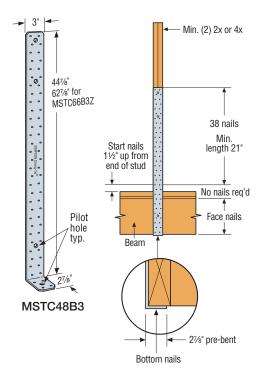
C-C-2021 @ 2021 SIMPSON STRONG-TIE COMPANY INC.

Finish: Galvanized. Some products available in ZMAX® coating;

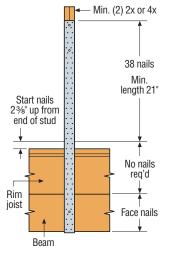

see Corrosion Information, pp. 12-15.

Codes: See p. 11 for Code Reference Key Chart

These products are available with additional corrosion protection. For more information, see p. 14.


		Min. Wood Fasteners (in.)					Allov						
	Model		nsion 1.)	Be	am		Tension				Tension Loads		Code
	No.	Width	Depth	Госс	Dettem	Studs/ Post	DF/SP	SPF/HF	Ref.				
		(min.)	(min.)	Face	Bottom		(160)	(160)					
	MSTC48B3	3	91/4	(12) 0.148 x 3	(4) 0 140 v 2	(38) 0.148 x 3	3,975	3,900	IBC,				
,	MSTC66B3Z	3½	111/4	(14) 0.148 x 3	(4) 0.148 x 3	(30) U.148 X 3	4,490	4,490	FL, LA				

- 1. Using fewer than 38 nails in the studs/post will reduce the allowable load of the connection. To calculate a reduced allowable load, use 199 lb. per nail for DF/SP or 172 lb. per nail for HF/SPF. Minimum length of extent of reduced nails may not be less than 21" as is shown in graphic.
- 2. Nails in studs/post shall be installed symmetrically. Nails may be installed over the entire length of the strap in the studs/post.
- 3. The minimum 3"-wide beam may be made up of two 2x members.
- 4. MSTC48B3 and MSTC66B3Z installed over wood structural panel sheathing up to 1/2" thick achieve 0.85 of table loads.
- 5. PSL beam may be used in lieu of a standard-dimension lumber beam with no load reductions.
- 6. Multiply allowable loads by 1.85 to attain an allowable load for installations where two straps have been installed with a $1\frac{1}{2}$ " clear space between straps.
- 7. Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers known as the narrow face. Values in the tables reflect installation into the wide face. See technical bulletin T-C-SCLCLM at **strongtie.com** for load reductions resulting from narrow-face installations.
- 8. Fasteners: Nail dimensions are listed diameter by length. See pp. 21–22 for fastener information.



MSTC66B3Z Installation

Section A-A

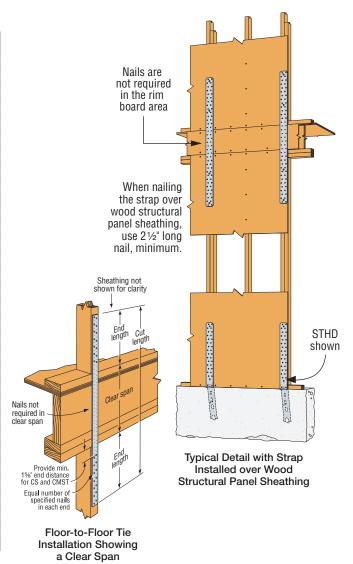
MSTC48B3 Installation with No Rim Board

MSTC66B3Z Installation with Rim Board

MST/MSTA/MSTC

SIMPSON Strong-Tie

Strap Ties (cont.)


Codes: See p. 11 for Code Reference Key Chart

These products are available with additional corrosion protection. For more information, see p. 14.

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348–352 for more information.

Floor to Floor Span Table

Model No.	Clear Span	Fasteners (Total)	Allowable Tension Loads (DF/SP)	Allowable Tension Loads (SPF/HF)
NU.	(in.)	(in.)	(160)	(160)
MCTA 40	18	(26) 0.148 x 2½	2,020	2,020
MSTA49	16	(26) 0.148 x 2½	2,020	2,020
MSTC28	18	(12) 0.148 x 31/4	1,150	995
10101020	16	(16) 0.148 x 31/4	1,535	1,330
	24	(20) 0.148 x 31/4	1,920	1,660
MSTC40	18	(28) 0.148 x 31/4	2,690	2,325
	16	(32) 0.148 x 31/4	3,070	2,655
	24	(36) 0.148 x 31/4	3,455	2,990
MSTC52	18	(44) 0.148 x 31/4	4,225	3,650
	16	(48) 0.148 x 31/4	4,610	3,985
	30	(48) 0.148 x 31/4	4,775	4,130
MSTC66	24	(54) 0.148 x 31/4	5,375	4,645
IVISTUOD	18	(64) 0.148 x 31/4	5,850	5,505
	16	(68) 0.148 x 31/4	5,850	5,850
	30	(64) 0.148 x 31/4	5,850	5,505
MSTC78	24	(72) 0.148 x 31/4	5,850	5,850
	18	(76) 0.148 x 31/4	5,850	5,850
	24	(14) 0.162 x 21/2	1,720	1,500
MST37	18	(20) 0.162 x 2½	2,460	2,140
	16	(22) 0.162 x 21/2	2,705	2,355
	24	(26) 0.162 x 2½	3,210	2,780
MST48	18	(32) 0.162 x 21/2	3,950	3,425
	16	(34) 0.162 x 2½	4,200	3,640
	30	(34) 0.162 x 2½	4,605	3,995
MST60	24	(40) 0.162 x 21/2	5,240	4,700
	18	(46) 0.162 x 2½	6,235	5,405
	30	(48) 0.162 x 2½	6,505	5,640
MST72	24	(54) 0.162 x 2½	6,730	6,345
	18	(62) 0.162 x 2½	6,730	6,475

See footnotes below.

	Model No.			Dimensions (in.) Faster (Total					ension Loads /SP)		Allowable Tension Loads (SPF/HF)			
		Ga.	ua.	ua.	Ga.	w		Nails (in.)	Bolts		Nails	Bolts	Nails	Bolts
			VV L	_	ivalis (III.)	Qty.	Dia.	(160)	(160)	(160)	(160)			
	MST27		21/16	27	(30) 0.162 x 2½	4	1/2	3,700	2,165	3,210	2,000			
	MST37	12	21/16	371/2	(42) 0.162 x 2½	6	1/2	5,070	3,030	4,495	2,800			
	MST48		21/16	48	(50) 0.162 x 2½	8	1/2	5,310	3,675	5,190	3,395	IBC, FL. LA		
	MST60	10	21/16	60	(68) 0.162 x 2½	10	1/2	6,730	4,490	6,475	4,150	,		
	MST72	10	21/16	72	(68) 0.162 x 2½	10	1/2	6,730	4,490	6,475	4,150			

- 1. See pp. 266–267 for Straps and Ties General Notes.
- 2. Install bolts or nails as specified by designer. Bolt and nail values may not be combined.
- 3. Allowable bolt loads are based on parallel-to-grain loading and minimum member thickness: MST 21/2".
- 4. Splitting may be a problem with installations on lumber smaller than 3½"; either fill every nail hole with 0.148" x 1½" nails or fill every other hole with 0.162" x 2½" nails. Reduce the allowable load based on the size and quantity of fasteners used.
- 5. **Fasteners:** Nail dimensions are listed diameter by length. See pp. 21–22 for fastener information.